Egyik könyvemben találtam érdekes képleteket a pályaintegrállól. A pályaintegrált Feynman előtt Norbert Wiener alkalmazta először a valószínűségszámításban,a sztochasztikus folyamatok leírására. A kvantummechanikai alkalmazhatóságát Mark Kac is felismerte Feynman előtt,de Feynman tette sikeressé.
pszi(x,t)=int(Kt(x,y)pszi(y,0)dy)
ahol Kt(x,y)=bra(x)exp(-iHt/hvonás)ket(y)
Kt az integrál magfüggvénye,ezt N egymás utáni,epszilon=t/N hosszúságú szakaszból kell összerakni,és a végén N-hez végtelenhez kell tartani. Ez azért kell,mert Feynman rájött akkor,hogy az
exp(-iHt/hvonás)=exp(-iTt/hvonás)exp(-iVt/hvonás) egyenlet nagyon rövid időkre igaz,de hosszabb időkre nem teljesül,mert a mozgási és a helyzeti energia operátora nem kommutál egymással.
Kt(x,y)=bra(x)exp(-iTt/hvonás)exp(-iVt/hvonás)ket(y)=gyökalatt(m/2pi i hvonás)exp(i/hvonás(m/2 ((x-y)/t)2-V(y))t)
a szétbontás után:
Kt(x,y)=limNtart végtelenhez(m/2pi i hvonás t/N)N/2int(dxN-1dxN-2..dx1exp(i/hvonás szumman=o-tól N-1-ig(m/2((xn+1-xn)/t/N)2-V(xn))t/N)
S(x'(t'))=intt,x-től 0,y-ig L(dx'/dt,x')dt'
Kt(x,y)=itnx-től y-ig Dx' exp(iS(x'(t'))
"A félklasszikus határesetben az S hatás "klasszikus" méretű:ha S sokkal nagyobb,mint hvonása,amit formálisan a hvonás tart nullához határeset fejez ki. Ilyenkor a pályaintegrál vadul oszcillál,kivéve ott,ahol az S(x'(t')) hatásfüggvénynek szélsőértékei vannak:a legkisebb hatás Hamilton-elvének megfelelő,klasszikus pályákon,ahol a hatás variációja eltűnik:dS=0. (d ilyenkor a variálást jelenti). Ebben a határesetben tehát csak a klasszikus pályák adnak járulékot a kvantummechanikai időfejlődésbe.
A kapott határeset azonban félklasszikus,nem teljesen klasszikus:amennyiben több extremális pálya létezik,pl. egy kétrés-interferenciakísérletben a két résen áthaladó egy-egy pálya,ezek mind kiválasztódnak,megmaradnak,az ampiltúdóik összeadódásával interferálnak is.
Maga az extremális pályák kiválasztása is a hullámok nyelvén igazán szemléletes:S/hvonás az adott pályán haladó hullám fázisa. Az extremális pálya közelében ez nem változik:a szomszédos pályák sokaságán ugyanazzal a fázissal fut be a hullám,egymást erősítve,masszív hullámfrontot alkotva. Ugyanez a mechanizmusa annak is,ahogy a fénysugár kialakul a hullámokból,a Fermat-elvnek megfelelő extremális pályák mentén.
A félklasszikus határesetben,az attól kicsit eltérő "kvantumkorrekciók" megtalálásában,és a félklasszikustól nagyon eltérő,mélyen kvantumos jelenségek világában is Feynman pályaintegrálja nemcsak az elvek megfogalmazásának szép kerete,hanem hatékony technikai eszköz is nehéz feladatok megoldásában."