Aurora11 Creative Commons License 2009.01.16 0 0 326

A determináns három vektor(a,b és c vektorok) által kifeszített paralelopipedon térfogata:

a(bxc)=c(axb)=b(cxa)=V

a(cxb)=c(bxa)=b(axc)=-V

a(bxc)=(a,b,c)=V

 

V=a1b2c3+a2b3c1+a3b1c2-a2b1c3-a3b2c1-a1b3c2.

Az elemeket mátrixba rendezik,amiből adott leolvasási szábállyal kapjuk a determináns értékét."Képezzük a főátlók mentén fekvő elemekből álló hármas szorzatokat,és láásuk el őket pozitív előjellel.A mellékátlók mentén fekvő elemekből képzett hármasszorzatokat pedig lássuk el negatív előjellel.

Az így nyert hattagú összeg éppen(a,b,c) hármas vegyesszorzat értékét adja."

A mátrixok determinánsa abban különbözik a vegyesszorzatok determinánsától,hogy a vegyesszorzat determinánsa a vegyesszorzatban szereplő három vektor által kifeszített paralelepipedon térfogata.A mátrix determinánsa pedig az új vektornak,-amit a mátrix hatása hoz létre az eredeti vektorból-bázisvektorai által kifeszített térfogat,és az eredeti vektor bázisvektorai által kifeszített térfogat aránya.Vagyis ez az érték jellemzi azt,hogy a vektor bázisvektorai éáltal kifeszített térfogat milyen mértékben változik,ha az adott operátor mátrixa hat rá,és átviszi őt egy másik vektorba.