Simply Red Creative Commons License 2005.08.06 0 0 325

 amit Simply Red mondott 291-ben: az egyenlitőn levő testet -bár nagyobb centripetális erő hat rá - nagyobb tömeg is húzza befele. Én azért azt hiszem - bár bizonyítani nem tudom még - hogy a centripetális erőhatás azért felülmúlja a nagyobb gravitációs erőt.
 
Klasszikusokat csak pontosan...
Meg amúgy is. Egyészt, itt nyilván fugálisat akartál írni petális helyett, másrészt, én - a feladatot egyszerűsítve - pusztán a gravitációs erő problémájával foglalkoztam, a centrifugális erő kérdése úgyis triviális.

 

Szóval, én még azt sem tudom, hogy egy nyugvó forgási ellipszoid gravitációs tere hol erősebb, az egyenlítőnél, vagy a sarkoknál.

 

Ha valaki ezt egyből ki tudja integrálni, az a továbbiakat ne olvassa el.

----

Az ilyen feladatok esetén általában érdemes extrém, és esetleg egyszerűbben számolható helyzeteken gondolkodni, hogy valami feelingünk legyen a dologról. Ez esetben egy végletesen torzult forgási ellipszoid helyett egy arra némileg hasonlító, ám könnyebben kezelhető példát javaslok: legyen egy egyforma, pici, homogén gömbökből álló hosszú lánc. A pici gömbök egy egyenes mentén helyezkedenk el, és egymáshoz érnek. Vizsgáljuk a gravitációs erőt egyrészt a lánc közepén lévő gömböcske felszínén (ez felel meg a sarkoknak), és a lánc végén (egyenlítő), midőn a lánc hossza végtelenhez tart.

 

Az n hosszúságú lánc végén az egyszerűbb: a pontszerű próbatestre ható erő konstans szorzótól eltekintve: 1/1+1/32+...+1/(2n-1)2 = szumma i=1..n[(1/(2i-1)2]

Szóval a páratlan számok reciprokainak a négyzetösszege.

De ide már nekem ehhez matematikus kell. Mennyi ez? Remélem, konvergens. (De ha nem, az se baj, legfeljebb meghagyjuk n-t végesnek)

 

A másik eset már olyan bonyolult, hogy teljesen rátok hagyom. Ott Pitagorasz tétellel kell számolgatni az egyes golyók középpontjának a próbatestünktől mért távolságát. Brr...

 

És persze ez még csak a rávezető, egyszerűsített feladat :-)

 

 

 

Előzmény: Galfi Gergo (324)