sehr1sehr1
2025.10.22
|
|
0 0
20809
|
Én elengedem a kérdést.
De annyit még hozzá kell tenni, hogy miért nincs szükség a tg(x) L transzformáltjára.( Azon kívül, hogy mint integrál persze vizsgálható.)
A Laplace transzformáltakat lineáris közönséges differenciálegyenletek és diffefferenciálegyenletrendszerekre alkalmazzuk a gyakorlatban. Ekkor persze kell még kezdeti és petemfeltétel is. A peremfeltétel y(x) vagy 1/2.(y(x-0)+y(x+0)) és tg(af)=0
ekkor f=k pi/a, k pozitív egész --- tehát ebből véges koszinusz transzformáltra jutunk
De f tg(af)=b választással véges kiszinusz transzformált vagy f ctg(af) esetén véges szinusz transzformáltra.
Tehát ez a dolog lényege. Hiszen tg(x)=sin(x)/cos(x)=1/ctg(x) definició szerint.
|
Előzmény: magyarpityu (20808)
|
|