Keresés

Részletes keresés

Aurora11 Creative Commons License 2009.02.13 0 0 348

Csak fontos momentum,hogy a dimenzió itt nem a térbeli kiterjedést kifejező hagyományos dimenziófogalom.Itt egy bázisvektort takar.A dimenzió megváltozása azt fejezné ki,hogy egy bázisvektor egy behatás(perturbáció) hatására több ettől eltérő bázisvektorra bomlik szét.Emiatt az állapotvektor már nem lesz időfüggetlen sajátállapot.A dimenziótorzulásban a torzulás kifejezi,hogy itt pontosan ugyanarról a jelenségről van szó,amikor egy tiszta hangban nemkivánatos jelenségek is fellépnek,mondjuk az elektroncsövek torzító hatására.Vagyis a hangszer torzít.Ez amiatt van,hogy a karakterisztikák az elektroncsönél nem párhuzamosak,így egy adott bemenő feszültség jelalakja nem lesz azonos a felerősített jel alakjával.Így megjelennek felharmonikusok is az eredetileg tiszta hangban.Az állapottér dimenziói azok az állapotvektor,amik a hangszer tiszta hangjainak felenek meg.

Általában az állapotvektor kontinuumvégtelen sok bázisvektor alkotja,míg a kötött állapotokban diszkrét sok.A diszkrét sok dimenziós esetben van értelme annak,hogy egy behatás hatására az állapottér törtdimenziós legyen.és ekkor fellépnek a fraktáldimenziók.

 

Előzmény: Aurora11 (346)
Aurora11 Creative Commons License 2009.02.12 0 0 347
Hozzá probálok látni,és leírok Neked emailen mindent.
Előzmény: Aurora11 (345)
Aurora11 Creative Commons License 2009.02.12 0 0 346

"Nagyon jó, hogy írod, mert nekem nincs ilyen háttértudásom, én csak leírtam azt, amit megsejtettem. Ez nagyon jó modellezés. Valójában a hullámrészecske kettősség is ezek alapján megválaszolja a dimenziótorzulás elméletet. Kiegészítik egymást.
Hiszen a hullám tulajdonság jól szemlélteti, hogy az anyagok közti kölcsönhatás miatt minden 'rezgésben' van, és az okozatiságot megfordítva, a 'rezgések miatt' minden kölcsönhatásban van. Elvileg akkor a 0 Kelvinnél szingularitás van?"

 

Amit az előadás során mondtál ez pont erről van szó.Vagyis van a térben egy minimális tartomány,aminél kisebb tartományba nem az anyagot betuszkolni.Ennek oka a Heisenberg-féle határozatlansági reláci miatt van,mert ha létezne ennél kisebb energia,akkor túl nagy lenne abban az anyag energiája,és minden ilyen probálkozásnál kiszökik az anyag a tartományból.Csak a kvantummechanikában ezek a kockák nem térkiterjedések,hanem energiakiterjedések.Vagyis nem köbméteres kockákról,hanem (hvonás/dt)3 oldalhosszúságú kockák vannak.

Az abszólut nulla pont csak akkor fordulhatna elő,ha nem lenne igaz,hogy van egy minimális térfogat,ami,ha egy kocka alakú,akkor ennél kisebb térfogatú kocka nem lehet.

Előzmény: Törölt nick (344)
Aurora11 Creative Commons License 2009.02.12 0 0 345

Szia Metasémikus!

 

Nagyon tetszik a névválasztásod!:)

A lakásunk elé vittek három kiscicát.Sajnos nem tudjuk megtartani őket,mert van már kutyánk,nyulunk két hörcsögünk,nyolc békánk,négy felnőtt vizicsigánk és vagy száz még nagyon pici,pár miliméteres vizicsigánk,akik kikeltek a petékből.Ezért szeretnénk jó gazdit találni a cicáknak,bár nagyon szomorú vagyok,amiatt,hogy nem tarthatjuk meg.Nektek nem kellene kiscica?

 

Gratulálok,hogy tovább jutatták a pályázatodat!:D

Fogok Neked emailt küldeni,csak át kell néznem a könyveket.A vektorbozonok,vagyis a W+,W-,Z0 részecskék a gyenge kölcsönhatás közvetítői.Ezek rövid hatótávolságú részecskék,amik bomlási termékei az elektronokat és a antineutrinokat(pozitronokat és neutirnokat) adják,ami a negatív béta sugárzás(pozitív béta sugárzás).Ezek csak a kvarkok közötti tartományban játszanak szerepet,kb.ennyi a hatótávolságúk.Ezért az elméletünkbe másféle részecskéket kell feltételeznünk.Esetleg a Higgs bozont,vagy valami teljesen mást.Vagy esetleg nem részecskét,hanem mozgásformát.Esetleg a dimenziók megváltozása,mint folyamat okozza létre ezt a mozgást.

Igen,sajnos nem szeretik a verbális fizikát,ahol nincsenek képletek,hanem csak szöveg van.De ezt szerintem meg fogjuk tudni oldani.

A leírási mód az szerintem a káoszelmélet által alkalmazott fraktáldimenziók összefüggései.Illetve a kvantumtérelméletre van szükség.

Előzmény: Törölt nick (343)
Törölt nick Creative Commons License 2009.02.12 0 0 344
"Amit Áron írt,a dimenziók eltorzulása számomra nem a hagyományos tér dimenziókban zajlanak le,hanem az állapotterekben.Olyasminek képzelem el,mint amikor ha egy elektroncsőbe egy síkhullámot juttattunk,akkor a felerősödött jel nem csak ennek a síkhullámnak a nagyított változatából áll,hanem ettől eltérő frekvenciájú síkhullámok is megjelennek.Ilyenkor mondjuk,hogy a hangszer torzít.Egy síkhullámot egy bázisvektornak mondhatunk,ez a Hilbert tér egyik dimenziójának bázisvektora.Mondjuk a hangszerben csak háromféle frekvenciájú hang szerepel,vagyis három dimenziós.Egy hangszer elektormos jelének egy dimeziója az elektorncsőben torzul,mert a háromféle frekvencia mellett sokféle is előfordul.Ilyenkor az általánosított dimenziók fogalmát,vagyis a fraktáldimenziókat kell bevezetni.A részecskék közötti kölcsönhatás is az állapotvektor dimenzióinak torzulásának következményei. Áronnak igaza van.Mert Ő az atomok terén az x,y,z koordinátákkal jelzett dimenziókról beszél.De a kvantummechanikában ezek a dimenziók ezeknek a frekvencia dimenzióknak a gyűjtő ábrázolása. Hogy mit látnánk a valóságos térben kis méretekben?Ez nehezebb kérdés.Mert amit atomok formájában ábrázolnak azokban egy (xi,yi,zi) térpont nem a közönséges térbeli pont,hanem azáltal a pont által szimbolizált Fourier-síkhullám(vagy gömbhullám) frekvenciaérték."

Nagyon jó, hogy írod, mert nekem nincs ilyen háttértudásom, én csak leírtam azt, amit megsejtettem. Ez nagyon jó modellezés. Valójában a hullámrészecske kettősség is ezek alapján megválaszolja a dimenziótorzulás elméletet. Kiegészítik egymást.
Hiszen a hullám tulajdonság jól szemlélteti, hogy az anyagok közti kölcsönhatás miatt minden 'rezgésben' van, és az okozatiságot megfordítva, a 'rezgések miatt' minden kölcsönhatásban van. Elvileg akkor a 0 Kelvinnél szingularitás van?
Előzmény: Aurora11 (341)
Törölt nick Creative Commons License 2009.02.12 0 0 343
Szia!

Ezt forgalmasabb topicba tedd közzé... hogy kerülsz amúgy macskákhoz?
Nem értelek.

UI: Olvasgatom, amiket írsz itt a Sch egyenletről.

Még nem írtam meg, hogy az Innovációs verseny 2. fordulójára - egy proft kértek meg, hogy bírálja az elméletet - tovább juttatták!

Továbbá elkérte a latintanárom, a fizikatanár, és Trócsányi proffal is levelezgetek.

Ha megírod az emailedre küldött kérésemet, (valahogy), akkor talán fizikailag is eltudják fogadni. Még több sikerünk lesz.

Mert idáig az a baj, hogy mindenki azt, mondja, hogy filozófiai mű inkább.

Üdv!
Előzmény: Aurora11 (342)
Aurora11 Creative Commons License 2009.02.12 0 0 342

"Kedves ismerőseim!

Találtam három kismacskát.Szép feketék,kb. 2-3 hónaposak lehetnek és SZOBATISZTÁK!Nagyon egészségesnek látszanak,vidámak,játékosak.Azt hiszem szukák!Sajnos egyik menhely sem fogadja be őket.Nálunk nem maradhatnak,ezért kérem segítségeteket!
Aki tud olyat,aki szívesen örökbe fogadná,az kérem írjon en vagy hívjon fel BÁRMIKOR!

Telefonszám: 30/5517232.(Jóföldiné)

Köszönöm segítségeteket!!!"

Nagyon aranyosak,játékosak!:)Kérlek benneteket,ha ismertek az ismerőseitek között olyant,aki szeretne cicát befogadni,és felelőséget tud vállni egy kisállat iránt,akkor ha tudjátok,küldjétek tovább nekik.
Sajnos a telefonom nem müködik,de megprobálom javítani,akkor 06309227208.Emailcímem jofzsolt@freemail.hu.
Előre is nagyon szépen köszönöm!
Zsolti a

Aurora11 Creative Commons License 2009.02.10 0 0 341

Szia Auréliusz!

 

Sajnos még nem tudtam beleolvasni,de bele fogok.Áronnak válaszolni fogok az emailjére amit küldött,csak át probálom gondolni a kapcsolatokat.Mert nem akarok hibás dolgot leírni Neki.De átolvastam könyveket a félvezetőkről,hogy megismerjem őket alalposan.

 

"Szerinted lehet-e létrehozni olyan állandósult elektroneloszlást, amelynek sűrűsége még megőrzi az anyag félvezető állapotát, azaz a gerjesztések hasznosíthatóak, de a kedvező struktúrának köszönhetően, jó abszorbens réteget képez?"

Szerintem nem,mindenképpen feszültséget kell kapcsolni a félvezető két oldalára.Ilyenkor az elektronok és a lyukak vándorolnak,vagy záróirnyba kevés pár keletkezhet.Ugyanis,ha nincs feszültégkülönbség ami az energiát pótolná,a perturbációszámítás alapján történő lesugárzás történik,annak ellenére,hogy a gerjesztett állapot esetleg stacionáriusLehet stacionárius az állapot,de energiát kell befektetni,mert csak az alapállapot stabil.De amúgy az elektronok és a lyukak között kialakul egy olyan statisztikus egyensúly,ami egyfajta gerjesztés nélküli alapállapotnak felel meg.

 

"Ebből kifolyólag, most eltekintve attól, hogy a mikroszkópikus világban a taszítást, vonzást a dimenziótorzulás okozza, ahogy előadásotokból kivettem, alkalmazható modell lenne ennek céljából egy gumikötéllel összefűzött üveggolyókkal borított asztal, melyet oldalirányú erőknek teszünk ki, a becsapódások a fény haladását konstruálnák. Vagy nem?"

Ez egy általános elképzelés,és a kvantummechanikában használják is.Ezért azt kell mondanom,hogy igaz.A dimenzió megváltozásával való magyarázat számomra összeállt formája viszont ennél radikálisabb.Amit Áron írt,a dimenziók eltorzulása számomra nem a hagyományos tér dimenziókban zajlanak le,hanem az állapotterekben.Olyasminek képzelem el,mint amikor ha egy elektroncsőbe egy síkhullámot jutattunk,akkor a felerősödött jel nem csak ennek a síkhullámnak a nagyított változatából áll,hanem ettől eltérő frekvenciájú síkhullámok is megjelennek.Ilyenkor mondjuk,hogy a hangszer torzít.Egy síkhullámot egy bázisvektornak mondhatunk,ez a Hilbert tér egyik dimenziójának bázisvektora.Mondjuk a hangszerben csak háromféle frekvenciájú hang          szerepel,vagyis három dimenziós.Egy hangszer elektormos jelének egy dimeziója az elektorncsőben torzul,mert a háromféle frekvencia mellett sokféle is előfordul.Ilyenkor az általánosított dimenziók fogalmát,vagyis a fraktáldimenziókat kell bevezetni.A részecskék közötti kölcsönhatás is az állapotvektor dimenzióinak torzulásának következményei.

Áronnak igaza van.Mert Ő az atomok terén az x,y,z koordinátákkal jelzett dimenziókról beszél.De a kvantummechanikában ezek a dimenziók ezeknek a frekvencia dimenzióknak a gyjtő ábrázolása.

Hogy mit látnánk a valóságos térben kis méretekben?Ez nehezebb kérdés.Mert amit atomok formájában ábrázolnak azokban egy (xi,yi,zi) térpont nem a közönséges térbeli pont,hanem azáltal a pont által szimbolizált Fourier-síkhullám(vagy gömbhullám) frekvenciaérték.

 

" schrödinger-egyenlettel kapcsolatban sajna nem mindent értettem meg, s többen is választ várnak tőlem effelől. E(pot)+E(kin)=E(sum), ez annyira leegyszerűsített változata lehet, hogy a tanárnőm élesen bírálta (enyhén szólva). Tudnál ezzel kapcsolatban egy pontos magyarázatot adni?"

 

Igen.Minden mennyiséghez a kvantummechanikában egy operátor felel meg.És a Schrödinger egyenletben a Hamliton-függvénynek a Hamilton operátor felel meg.A Hamilton függvény a legtöbb esetben(ha a potenciál nem függ az időtől,illetve nincs jelen mágneses tér,illetve nincs súrlódás) a mozgási és a helyzeti energia összege.

Hpszi=i hvonás   d(pszi)/dt.

A pszi a részecske hullámfüggvénye.Ennek abszólútérték négyzete a valószínűségsűrűsége,egy adott pontban.A H operátor a mozgási energia operátornak és a potenciális energia operátornak az összege.

Az i hvonás d(pszi)/dt pedig időfüggetlen esetben éppen Epszi,ahol E a mozgási és a helyzeti energia összege.

Így az időfüggetlen Schrödinger-egyenlet:

Em pszi+V pszi=E pszi

 

Az Em=p2/2m.De az impulzus operátora p=hvonás/i nabla

Így az időfüggetlen Schrödinger egyenlet:

-hvonás2/2m nabla2 pszi+Vpszi=Epszi,ahol nabla2 a Laplace-operátor

 

Az én lelki szemeim előtt kvantummechanika=hidrodinamika.Így a dimenziótorzulást mindenképpen a fraktáldimenziókkal probálom kapcsolatba helyezni.És Áron elméletea,ami egy dimenziók segítségével müködő dinamika lenne,nemcsak a kvantummechanika,hanem a nemlineáris,de kis szabadságfokú rendszerek leírására is jól müködő lenne,szerintem.

 

 

Előzmény: Auréliusz (340)
Auréliusz Creative Commons License 2009.02.10 0 0 340

Szia Aurora11!

 

Már régen írtam, és csakúgy érdekelne, hogy beletudtál-e olvasni itt a topicban korábban a napelem tervezetembe.

Szerinted lehet-e létrehozni olyan állandósult elektroneloszlást, amelynek sűrűsége még megőrzi az anyag félvezető állapotát, azaz a gerjesztések hasznosíthatóak, de a kedvező struktúrának köszönhetően, jó abszorbens réteget képez?

 

Ebből kifolyólag, most eltekintve attól, hogy a mikroszkópikus világban a taszítást, vonzást a dimenziótorzulás okozza, ahogy előadásotokból kivettem, alkalmazható modell lenne ennek céljából egy gumikötéllel összefűzött üveggolyókkal borított asztal, melyet oldalirányú erőknek teszünk ki, a becsapódások a fény haladását konstruálnák. Vagy nem?

 

A schrödinger-egyenlettel kapcsolatban sajna nem mindent értettem meg, s többen is választ várnak tőlem effelől. E(pot)+E(kin)=E(sum), ez annyira leegyszerűsített változata lehet, hogy a tanárnőm élesen bírálta (enyhén szólva). Tudnál ezzel kapcsolatban egy pontos magyarázatot adni?

Előzmény: Aurora11 (339)
Aurora11 Creative Commons License 2009.01.26 0 0 339

Szia Áron!

 

A klasszikus fizika törvényei a XIX.századra szinte teljesen kiépült.A klasszikus mechanika törvényei az ember körül levő makroszkópikus tárgyak,gőzgépek,motorok mozgásának leírására teljesen beváltak,emelett a csillagászatban a bolygók mozgásának számítását olyan pontosan tette lehetővé,hogy sikerült egy új bolygó égi helyzetének megjóslása,így sikerült felfedezni a Plutot.

Aztán a termodinamika a hőtani folyamatokat olyan pontossággal írja le,hogy az elmélet a tapasztalattal teljes egyezés áll,míg a kinetikus modellel csak körvonaliban sikerült megérteni ugyanezen jelenségeket.Itt mutatkozott meg először,hogy a klasszikus mechanikának van érvényességi tartománya.

Az 1800-as években az elektromosságtan fellendült a galvánelemek megalkotásával,és rengeteg új törvényt fedeztek fel az elektromosságtan terén,amit azelőtt nem lehetett felismerni,mert csak sztatikus töltéseket tudtak előállítani,hatalmas dörzsgépeikkel,de folyamatos áramot,csak a galvánelemek megjelenésével tudtak.Első törvények a Newtoni távolbaható erők képének segítségével készültek.Faraday vezette be a mező fogalmát,ami nagy áttörést okozott,mert az Ő elméletében a mező közvetíti a kölcsönhatást,közelhatással dolgozik,ahol az erőket a mező közvetíti,nem képesek a vákuumon átjutni a másik testhez,mint a régebbi Newtoni-közelható erők.Faraday ezenkívűl összefüggést talált az elektromos és mágneses mező között,az indukció jelenségének felfedezése után pedig megalkotta az első generátort.A generátorok által lecsökkenhett az áram ára(a galvánelemek elég drágák) így az elektromosságtan már nemcsak a kísérleti laboratoriumok érdekes kutatási témája volt,hanem  a mindennapi életünk szerves része.

Maxwell mindazt,amit Faraday felismert,leírta matematikai formulákba,megalkotva a róla elnevezett egyenleteket.Ezek magukba foglalják az összes eddig ismert elektromágneses jelenséget:Ampere-törvény,Biot-Savart-törvény,Neumann-törvény,Lenz-törvény,Farady-törvény.És mivel a mező Faraday szerint az elektromos testek között lévő folyadékhoz hasonlít,a hidrodinamikai kontinuitási törvényt megkövetelve a töltéssűrűségre,megkapta az eltolási áramot.Ezzel kiegészítve a gerjesztési törvényt,ki tudta hozni a Maxwell-egyenletekből az elektromágneses hullámok hullámegyenletét.És a hullám sebességére a fénysebességet kapta meg,ezzel ráeszmélt arra,hogy a fény is elektromágneses hullám.Ezzel megtalálta a kapcsolatot a fénytan és az elektrodinamika között,és innentől kezdve a fénytan az elektrodinamika egyik fejezetévé vált.

Az elektrodinamikát és a klasszikus mechanikát össze probálták illeszteni,az atomi szemlélet elfogadása után.Kiderült,hogy az atomok mozgása már nem követi a klasszikus mechanika törvényeit,ha a sebessége megközelíti a fénysebességet.A mechanikát aztán bizonyos változtatásokkal össze tudták illeszteni az elektrodinamikával,és így megkapták a fénysebesség közelében is érvényes mozgástörvényeket,amiket a speciális relativtáselmélet tartalmaz.A fény határsebesség lett,nem létezik annál nagyobb sebesség,tömeggel rendelkező részecske csak megközelítheti,de el nem érheti.

Fellléptek olyan problémák,amiket az elektrodinamika,termodinamika és a speciális relativitáselmélet segítségével sem sikerült magyarázni.Ezek közé tartozik az a tapasztalat,amit a színképelemzések vizsgálatánál vettek észre és sehogyan sem tudtak magyarázni.A kémiai elemeknak színképvonala volt,amik létezése nem jött ki a klasszikus elektrodinamika törvényeiből.Miért csak meghatározott energiakülönbségeknek megfelelő fényt tud elnyelni és kisugározni a fény?

Emellett a hőmérsékleti sugárzás is teljesen érthetetlen jelenség volt az elektrodinamika szerint.Az elektrodinamika nem elég,hogy nem volt képes visszaadni a hőmérsékleti sugárzás kimért eredményeit,hanem egyszerűen végtelen energiát jósolt meg,amelyben az egyre nagyobb frekvenciájú elektromágneses hullámkomponenseknek egyre nagyobb az energiája.Ezt a paradoxont nevezik ultraibolya katasztrófának,mert a hőmérsékleti sugárzás energiája végtelen,és a nagy frekvenciájú kompnensekhez jutna a legtöbb ebből.

Auréliusz Creative Commons License 2009.01.20 0 0 337

Köszi, hogy segítettél megint, hogy megértsem, valahogy én is úgy gondoltam, hogy a hullámmozgással valamilyen valószínűségre lehet következtetni, még mielőtt erről bármit is olvastam volna, így most tisztázódott.

Minél hamarabb megpróbálok egy számomra átfogó, de lehet, hogy a te számodra nagyon alapnak számító leírást adni az elektrodinamikáról, szilárdtestfizikáról és az optikáról, s használni fogom legújabb számítási redeményeimet is, melyekben édesapám is segített, (pl.: a kötési elektronok elmozdulása, hullámjainak ívhossza, figyelembe véve [mikro-akusztikailag] a zörejeket és a tömegdefektust).

Előzmény: Aurora11 (332)
Aurora11 Creative Commons License 2009.01.19 0 0 336

Szia Auréliusz!

 

Az Eukideszi geometriában,akkor ortogonálisak a vektorok egymásra,ha egymással kilencven fokot zárnak be egymással.Ilyenkor ugyanis a skalárszorzatuk nulla.Más terknél,például a Hilbert-térnél ugyanez az ortogonalitás már csak azt jelentihogy skalárszorzatuk nulla,ugyanis ezeket nem lehet geometriailag ábrázolni,nincs értelme a vektorok közötti hajlásszögnek.

"mátrix adjungáltjának képterének ortogonális kiegészítő altere." Ezt sajnos nem ismerem.

"Ez így teljesen érthető, de ezek szerint van olyan tér, amely nem euklideszi, hiszen minden elképzelésemet kimerítette a térrel kapcsolatban?"

Igen.Például a Hilbert-tér,aminek a vektorai,a kvantumállapotok állapotvektorai.Ez egy végtelen dimenziós tér.A speciális relativitáselméletre illeszkedik a Minkovszki geometria,ami négydimenziós hiperbolikus geometria.Ez a különleges geometria adja a speciáls relativitás elmélet meghökkentő sajátságait.Az Euklideszi geometriát szokás cirkuláris geometriának nevezni,mert egy koordinátarendszer origójából huzzot azonos nagyságú vektorok egy körön helyezkednek el.(sin2(fi)+cos2(fi)=1)

Míg a hiperbolikus geometriában a koordinátarendszer origójából húzott azonos nagyságú vektorok egy hiperbolán heylezkednek el.

(ch2(fi)-sh(fi)=1)

A tér ilyen általános értelemben azt jelenti,hogy bizonyos vektorokra olyan azonosságok teljesülnek,amik hasonlítanak az Euklideszi(közönséges értelemben vett tér)-geometria vektoraihoz,de lehetnek eltérések.

"Mi az hogy balszorozva? Talán balról szorozva?"Az operátorok fontos tuljadonsága,hogy nem mindegy,hogy egy vektorral melyik irányból szorozzuk.Illetve,ha több operátort szorzunk össze,akkor fontos a sorrend,mert eltérő eredményeket kaphatunk.(innen ered a kvantummechanika

px-xp=hvonás/i I összefüggése.Ez azért igaz,mert p és x operátorok,és az operátoroknál fontos a sorrend nem felcserélhetők.Ha p és x vektor lenne akkor ennek az egyenletnek nullát kell adni,mert a vektorok skalárszorzata független a vektorok szorzási sorrendjétől.) 

Emiatt ha egy vektort jobbról szorzunk egy operátorral,akkor más értéket kaphatunk,mintha balról szoroznánk.Így megkülönböztetik a mátrixokkal való balról és jobbról való szorzását.Ha jobbról szorozzuk a mátrixot egy vektorral,akkor azt a vektort átvihetjük balra,de akkor a mátrixot transzponálni kell.Vannak olyan mátrixok amik megegyeznek a transzponáltjukkal,ezek a szimmetrikus mátrixok.A szimmetrikus mátrixoknál a baloldali és a jobboldali szorzás ugyanazt az előjelt adja,vagyis mindegy hogy melyik oldalról szorozzuk egy vektorral.

"És hogyan állapíthatjuk meg akkor, hogy egy 3X3-as mátrix magterében benne van egy vektor?"Sajnos erről nem tanultam.Nem tudom,hogy mi az a magtér.A mag kifejezésről hallottam csoportelméleten.De nem nagyon állt össze a kép.

"És ha esetleg téged is érdekelne egy picit a kéthullámkeverés vagy a fotorefrakció, akkor állok elébe."

Igen,érdekelne!

 


 

 

Előzmény: Auréliusz (335)
Auréliusz Creative Commons License 2009.01.19 0 0 335
Köszi, de ezekről én is tudok egyet s mást, persze, ha van olyas valami, amit mindenképpen meg szeretnél osztani, én örömest benne vagyok.

Ha ne bánod, és még szívesen válaszolnál, megkérdeznék egy matematikai állítást is, melyet elsoszulott írt nekem, de már szégyellem erről tovább faggatni. Azt írja: az euklideszi térben merőlegességet úgy nézzük, mint gimiben koordináta-geoból, skalárszorzat 0 akkor ortogonálisak. De igazából talán azt kellene mondani, hogy a mátrix adjungáltjának képterének ortogonális kiegészítő altere. De egyszerűbb amit Gergo73 mondott, hogy azok a vektorok amiket a mátrixal balszorozva 0vektort kapsz.

Ugye az eukliedészi normában értelmezhetjük a hosszúság kifejezést, a wikipédia az alábbi definíciókat adta:

* Euklideszi geometria, a geometriában olyan abszolút illeszkedési tér, melyben teljesül az euklidesz-féle párhuzamossági posztulátum
* Euklideszi metrikus tér, az analízisben olyan metrikus tér, melyen egy n-dimenziós euklideszi metrika van értelmezve
* Euklideszi normált tér, olyan vektortér (pontosabban normált tér), melyen egy úgynevezett euklideszi norma van értelmezve
* Euklideszi tér, olyan vektortér, melyen egy skaláris szorzás van értelmezve, tehát számokat kapunk

Ez így teljesen érthető, de ezek szerint van olyan tér, amely nem euklideszi, hiszen minden elképzelésemet kimerítette a térrel kapcsolatban?
Mi az hogy balszorozva? Talán balról szorozva? És hogyan állapíthatjuk meg akkor, hogy egy 3X3-as mátrix magterében benne van egy vektor?

Előre is köszönöm.

És ha esetleg téged is érdekelne egy picit a kéthullámkeverés vagy a fotorefrakció, akkor állok elébe.

Üdv Auróra11.


Előzmény: Aurora11 (334)
Aurora11 Creative Commons License 2009.01.18 0 0 334

Igazából a Bohr-féle keringő eletronos atommodell szmeléletes,de számításokhoz teljesen alkalmatllan.Egyedül a színképvonalakat írják le helyesen.De mind az elektrodinamikában,például a törésmutató kiszámításához,mind az összes atomi folyamatok leírásához csak a hullámkép megfelelő.Például a hullámképpel kijön a Rutherfor-szórás eredménye is,annak ellenére,hogy ebben ez az atommag részecske bizonyítására,és a Naprendszer modell bevezetésére vezetett még a század elején.De a hullámkép a fényelektromos hatást és a Compton szórást is magyarázza.És a hullámképpel már azzal,hogy elfogadtuk,de nem használjuk a Schrödinger-egyenletet,azzal is rengeteg molekuláris jelenséget meg lehet magyarázni.

Ha érdekel rengeteg példát írnék Neked ezekről,beszélgethetnénk róla.

Előzmény: Auréliusz (330)
Aurora11 Creative Commons License 2009.01.18 0 0 333

Fx=-dU/dx+d3U/dx3-d5U/dx5+.....

Fy=-dU/dy+d3U/dy3-d5U/dy5+........

Fz=-dU/dz+d3U/dz3-d5U/dz5+.........

 

Előzmény: Aurora11 (332)
Aurora11 Creative Commons License 2009.01.18 0 0 332

"Egyébként, tényleg nagyon rendes tőled, hogy elmagyaráztad. Ilyenkor örülök leginkább annak, hogy még jó, hogy én is segítek másoknak."

 

Köszönöm,de én is nagyon sokat tanultam!Nagyon rendes Tőled,hogy segítesz másokon!

 

"Egyébként, tényleg nagyon rendes tőled, hogy elmagyaráztad. Ilyenkor örülök leginkább annak, hogy még jó, hogy én is segítek másoknak."

 

Az a probléma,hogy a Newton-törvény abból indul ki,hogy

F=-gradU=-nablaU

A nabla vektor:(d/dx,d/dy,d/dz),vagyis parciális deriváltakból felépített vektor.

Fx=-dU/dx

Fy=-dU/dy

Fz=-dU/dz

 

De kiderült,hogy ez közelítőleg igaz,mert az erőt akkor elégíti ki ez az összefüggés,ha U koordináták szerinti deriváltjai nem túl nagyok,vagyis,ha a potenciál nem túl gyorsan változik a hely szerint.Akkor igaz,ha a potemciál csak makroszkópikus méretekben változik.Ezért lehet az,hogy a részecskegyorsítókban a részecskékre lehet alkalmazni a klasszikus mechanika mozgástörvényeit,noha elemi részecskék.Azért lehet,mert lehet,hogy elemi részecskék,de az őket mozgató elektromágneses tér(például gyorsító mágnesek tere)makroszkópikusan változik,így a Newton-törvények még jó közelítések.De ha egy elektronnak az atomban levő mozgását akarjuk vizsgálni,akkor a potenciál túl gyorsan változik ahoz,hogy a klasszikus mecahnika változzon.Mert az atommag elektromos potenciálja,atomátmérőnyi távolságon belül jelentősen változik.Ekkor a Newton törvények nem adnak jó közelítést,teljesen használhatatlanoká válnak.

Ilyenkor

Fx=-dU/dx+d3U/dx3-d5U/dx5+.....

Fy=-dU/dy+d3U/dy3-d5U/dy5+........

Fz=-dU/dz+d3U/dz3-d5U/dz5+.........

 

Vagyis a potenciál hely szerinti magasabb deriváltjai sem hanyagolhatóak el.Igazából a klasszikus méretekben is ez a helyes megoldás,de ott a potenciálnak a hely szerinti első deriváltján kívűl a többi tagot el lehet hanyagolni,olyan picik.De ha a potenciál túl gyorsan változik(atomi mérettartományon is jelentősen) akkor az összes,végtelensok tagot meg kéne tartani.

Ezért a kvantummechanikáan sohasem számítolnak erőkkel,nincs is erőelmélet.Igazából csak impulzussal és energiával számolnak,meg sem probálnak deriválni,hogy erőt kapjanak,mert az úgyis csak klasszikus fizika szerinti erő lenne,ami ebben az esetben teljesen hibás.

 

Hogy mivel probálj számolni?Tudod van a harmonikus oszcillátor.Ilyenkor a rezgés gyorsulása arányos kitéréssel.A sebességgel arányos tag adja a viszkozitást.Ilyenkor lineáris az erőtörvény.De ha van az erőnek nemlineáritása,vagyis a gyorsulás a kitérés négyzetével is arányos(vagy köbével vagy magasabb hatványú kitéréssel) akkor az oszcillátor anharmonikus lesz.De ez az anharmonikusság úgy viselkedik,mintha az oszcillátor továbbra is harmonikus lenne,csak hat rá valamiféle kényszererő.Vagyis hat rá valamiféle rezgető hatás.

Ugyanez van a klasszikus mechanika törvényeivel.Ilyenkor a Fermat-elv,a legrövidebb idő elve érvényesül.A részecske mindig azon a pályán halad,amit a legrövidebb idő alatt meg tud tenni.Például a szabd részecske,amire erő nem hat,egyenes pályán halad.De ha a klasszikus mechanikáhoza kvantumos korrekciókat hozzáadjuk,akkor már a Fermat-elv nem lesz igaz,és nem tudunk a részecskéhez pályát rendelni.És ekkor anyaghullámokat kell a részecskék helyett rendelni,tudva azt,,hogy ezek a részecskék továbbra is léteznek,csak ezek az anyaghullámok írják le a részecskék megtalálási valószínűségét.Ezért az anygahullámokat valószínűségi hullámoknak nevezzük.Ez azért van,mert a Newton-törvényekhez járuló kvantumkoorekciók elrontották a Fermat-elvet,amire a klasszikus mechanika és a geometriai optika épült.(A geometriai optika a klasszikus mechanika alapján írható le,míg a hullámoptika a kvantummechanika alapján).Az elektomágneses hullámok a fotonok valószínűségi hulláma.Egy adott helyen a hullám kitérésének(ampiltúdónak nevezik,mégsem biztos hogy maximális kitérés)abszolútértéknégyzete adja a foton azon a helyen mért valószínűségét.

 

Szerintem úgy jársz jól,ha hullámokkal probálod meg az atomi jelenségeket leírni.A kötött állapotokat úgy kell elképzelni,mint a sípokban kialakuló állóhullámok.

 

Szerintem mindenkép ajánlom Neked:Marx György:Atomközelben

Marx György:Életre való atomok.

Középiskolás matematikai ismeretek elegendőek az elsőhőz,a második nagyrésze is követhető egyetemi analízis nélkül.





 

Előzmény: Auréliusz (330)
Aurora11 Creative Commons License 2009.01.18 0 0 331

Szia Auréliusz!

 

Nagyon örülök,hogy segíthettem Neked!:)A gradiens és a rotáció egy skizofrén vektorral való műveletek.Ez a skizofrén vektor a nabla,mert félig vektor(három komonensű az alakja),és félig operátor.A nablával való skalárszorzás kétféle elnevezést kapott.Ha a nablával egy skalár függvényt szorzunk,akkor kapjuk a gradienst,ami vektor,mert vektor szor skalár=vektor.

grad(fi)=nabla szor fi

Ha nablával egy vektort szorzunk skalárisan,akkor egy skalár mennyiséget,amit divergenciának neveznek.

div(v)=nabal szor v

ha nablával keresztszorzunk(vektorszorzunk) egy vektort,akkor egy vektort kapunk,amit rotációnak neveznek.

rot(v)=nablaxv

 

A gradiensne van egy szemléletes jelentése is.Egy skalrából képzet gradiensvektor abba az irányba mutat,amelyik irányba a leggyorsabban változik aza skalárfüggvény,a nagyága azt fejezi k,hogy egységnyi hosszra mérve mennyit változik az a mennyiség.Például a geotermikus gradiens a Föld hőeloszlásából(mint skalár függvény)képzett gradiensvektor nagysága.Az iránya a Föld középpontja felé mutat,mert abba az irányba változik a legjobban a hőmérésklet.

A divergencia azt fejezi ki,hogy ha egy tartályba beáramlik víz és onnan kifele is áramlik,akkor mennyi víz marad a tartályban,vagy mennyi víz keletkezett a tartályban,ami pozitív divergenciát jelent.Ugyanis,ha a tartályban víz keletkezik,akkor a tartály egy forrás,ami vízet termel,mondjuk van egy rejtett cső,ahol külön beáramlik vízmennyiség.Ha a víz eltünik a tartályból,akkor a tartály egy nyelő(negatív divergenciája van),ahol eltünik a víz egy része,mert mondjuk a fala valahol lyukas,és a víz egyrésze kicsöpög,és nem jut át a másik csővezetékhez.De a kémiai reakciók igazi példája a forrásoknak és nyelőknek,ahol ténylegesen anyagfajták keletkeznek és eltünnek(átalakulnak másféle molekulákkal,de a leírás szempontkából eltünnek).

A rotáció szemléletes magyrázata a forgással van kapcsolatban.A víz áramlását lehet jellemzeni a folyadék minden pontjának sebessértékeinek sokaságával,amit sebességmezőnek lehet nevezni.Ez vektormező,ezt lehet keresztszorozni a nablával,így lehet a sebességmező rotációját venni.A sebesség rotációja,a sebességmező adott pontjában(ahol a sebességet nézzük)helyezett virágporszemcse forgásának frekvenciája felét adja.Ha a Duán nézzük a jégtáblákat,azok a súrlódás miatt(parabolikus sebessgporofil) forognak,mert a parthoz közelebbi vízrétegek lassabbak,mint a parttól távolabbiak.Ez forgatónyomatékot jelent a jéghegyre nézve,emiatt forognak a jégtáblák.Ha lemérük a forgásának a frekvenciáját,akkor a víz sebességmezeje rotációjának kétszeresét kapjuk.

"Apropó, polár-koordinátás vagy implicit alakú függvények integrálását tanultad-e? Mert ha nem, akkor megnyugodok, mert legalább ezzel még villoghatok előtted matekból. Bebe:)))))"

 

Tanultam,de már nem nagyon emlékszem rá....

Előzmény: Auréliusz (330)
Auréliusz Creative Commons License 2009.01.18 0 0 330
Szia Aurora11

Nagyon szépen leírtad, sok tankönyvet lepipálsz, komolyan mondom. Ezt a témakört teljesen megértettem, hála neked. A gradiens és rotáció is előszokott jönni a többváltozós függvények analízisénél, de ezek az operátorok miért kaptak külön nevet?

Apropó, polár-koordinátás vagy implicit alakú függvények integrálását tanultad-e? Mert ha nem, akkor megnyugodok, mert legalább ezzel még villoghatok előtted matekból. Bebe:)))))

Egyébként, tényleg nagyon rendes tőled, hogy elmagyaráztad. Ilyenkor örülök leginkább annak, hogy még jó, hogy én is segítek másoknak.

Nem tudom, mennyire járok közel, ha a klasszikus mechanikával akarom közelíteni a kvantummechanikai folyamatokat, mert az utóbb időkben egy-egy ötletes feladat láttán sajátos modellek jutottak eszembe az elektron gerjesztéskor mutatott viselkedéseire.
Előzmény: Aurora11 (326)
Aurora11 Creative Commons License 2009.01.17 0 0 329

Szia Áron!

 

Olvastam,amit tegnap írtál,és szerintem nagyon jó volt.Írok Neked emailt,és ott leírom,hogy mit gondolok róla.

Aurora11 Creative Commons License 2009.01.16 0 0 326

A determináns három vektor(a,b és c vektorok) által kifeszített paralelopipedon térfogata:

a(bxc)=c(axb)=b(cxa)=V

a(cxb)=c(bxa)=b(axc)=-V

a(bxc)=(a,b,c)=V

 

V=a1b2c3+a2b3c1+a3b1c2-a2b1c3-a3b2c1-a1b3c2.

Az elemeket mátrixba rendezik,amiből adott leolvasási szábállyal kapjuk a determináns értékét."Képezzük a főátlók mentén fekvő elemekből álló hármas szorzatokat,és láásuk el őket pozitív előjellel.A mellékátlók mentén fekvő elemekből képzett hármasszorzatokat pedig lássuk el negatív előjellel.

Az így nyert hattagú összeg éppen(a,b,c) hármas vegyesszorzat értékét adja."

A mátrixok determinánsa abban különbözik a vegyesszorzatok determinánsától,hogy a vegyesszorzat determinánsa a vegyesszorzatban szereplő három vektor által kifeszített paralelepipedon térfogata.A mátrix determinánsa pedig az új vektornak,-amit a mátrix hatása hoz létre az eredeti vektorból-bázisvektorai által kifeszített térfogat,és az eredeti vektor bázisvektorai által kifeszített térfogat aránya.Vagyis ez az érték jellemzi azt,hogy a vektor bázisvektorai éáltal kifeszített térfogat milyen mértékben változik,ha az adott operátor mátrixa hat rá,és átviszi őt egy másik vektorba.

Előzmény: Törölt nick (323)
Aurora11 Creative Commons License 2009.01.16 0 0 324

Szia!

 

Igen,bocsánat!Igen,most már válaszoltam is.Csak tegnap nagyon azt írta a gép a freemailnél,hogy nem tudok belépni,mert lejárt az időkorlát.

Előzmény: Törölt nick (321)
Aurora11 Creative Commons License 2009.01.16 0 0 320
A mátrix alakja ilyenkor (A11 A12 A13)

                                                                  (A21 A22 A23)

                                                                  (A31 A32 A33)

Vagyis ilyen saktáblaszerű ábra az operátor mátrixa.De ez tartalmazza azt az információt,hogy az operátor ha hat egy vektorba akkor melyik vektorba viszi át.

x'=A11x+A12y+A13z

y'=A21x+A22y+A23z

z'=A31x+A32y+A33z.

 

A mátrix determinánsa az a szám,ami kifejezi azt,hogyha egy vektorra hat,akkor az új vektor bázisvektorai által kifeszített térfogat hányszorosa az eredeti vektor bázisvektorai által kifeszített térfogatnak.Vagyis a determináns térfogatnövekedési faktornak is nevezik.Ha a mátrix 2x2-es akkor a determinánsát felületnövekedési faktornak is nevezik.Az előbb említett 3x3-as mátrix determinánsa:

detA=A11A22A33+A21A32A13+A12A23A31-A31A22A13-A21A12A33-A32A23A11.Azt is kifejezi,hogy a vektor mennyire nyúlik meg a leképezés során.

 

Az indexeket nem kicsinyítettem le.

 

Előzmény: Aurora11 (319)
Aurora11 Creative Commons License 2009.01.15 0 0 319

Szia Auréliusz!

 

Az operátornak az ábrázolása a mátrix.Ugyanúgy,ahogy a vektornak az ábrázolása az (x,y,z).Azért csak az ábrázolása,mert a kifejezésben levő számértékek függnek a koordinátarendszer megválasztásától.De mint művelet az operátornak és a vektornak van egy ábrázolástól független jelentése.Az operátor egy olyan művelet,ami ha egy vektorra hat,akkor egy másik vektorba viszi át,irányát és nagyságát is megváltoztatva.(ha egy vektorral nem történik semmi,akkor a matematikusok szerint azért történt művelet,ugyanis önmagába lett leképezve.Ilyenkor a vektorra az egységoperátor hat,ami a vektort önmagába viszi át.)Van egy vektorunk (x,y,z) és arra az operátor úgy hat,hogy átviszi a másik vektorba (x',y',z').A mátrix alakja ilyenkor (A11 A12 A13)

                                                                  (A21 A22 A23)

                                                                  (A31 A32 A33)

Vagyis ilyen saktáblaszerű ábra az operátor mátrixa.De ez tartalmazza azt az információt,hogy az operátor ha hat egy vektorba akkor melyik vektorba viszi át.

x'=A11x+A12y+A13z

y'=A21x+A22y+A23z

z'=A31x+A32y+A33z.

 

A mátrix determinánsa az a szám,ami kifejezi azt,hogyha egy vektorra hat,akkor az új vektor bázisvektorai által kifeszített térfogat hányszorosa az eredeti vektor bázisvektorai által kifeszített térfogatnak.Vagyis a determináns térfogatnövekedési faktornak is nevezik.Ha a mátrix 2x2-es akkor a determinánsát felületnövekedési faktornak is nevezik.Az előbb említett 3x3-as mátrix determinánsa:

detA=A11A22A33+A21A32A13+A12A23A31-A31A22A13-A21A12A33.A32A23A11.Azt is kifejezi,hogy a vektor mennyire nyúlik meg a leképezés során.

 

A pozitron minden túlajdonságában megegyezik az elektronéval,a különbség csupán annyi,hogy töltése az elektron töltésének ellentetje,vagyis elenkező előjelű,de a nagysága azonos.Ezért elektromágneses térben ellenkező iráyba térül,mint az elektron,de az eltérülés mértéke azonos(a pozitron töltésének a nagysága,és a tömege ugyanannyi mint az elektronnak).Így fedezte fel Anderson a ködkamrájában,amikor a kozmikus sugárzás részecskéit vizsgálta.Ilyenkor párkeltést látot.Olyan gamma foton hozhat létre elektron-pozitron párt,amelynek energiája ngyobb,mint két elektron nyugalmi tömegének a kétszerese(a foton többletenergiája az elektron és a pozitron mozgási energiáját adja,szétoszlik egyenlő mértékben kettőjük között).A párkeltéshez szükség van erős elektromágneses térre is(valószínűleg a közbenső lépésben keletkező majd megszűnő virtuális fotonok miatt),ezért párkeltés nehéz magok erőteréhez közel zajlanak le,például ólomlemez mellett.Más részecskéknek is felfedezték az antirészecskéjét,amik a nekik megfelelő részecskékkel találkozva annihilálódnak.A semleges részecskéknek is van antirészecskéik,de ezeknek mivel nincs töltésük,ezért csak a megfelelő részecskepárjukkal történő annihiláció által lehet a jelenlétükre következtetni.

Az időben visszafelé haladást nem ismerem,bár hallottam róla,de nem tudom,hogy kell érteni.A pozitron amikor elektronnal annihilál,akkor két foton keletkezik,a elektron és a pozitron összenergája oszlik szét közöttük.Az impulzus- és az energiamegmaradását egyszerre csak két foton keletkezése biztosítja(néha három foton is keletkezik).Szóval jócskán gamma foton keletkezik.A PET-ben is gamma sugarak képződnek amikor a pozitronok az emberi szövet elektronjaival ütköznek.

 

"Nem lehetne-e a jövőben pl.: műholdakat vagy űrszondákat a kozmikus-sugárzás energiájával táplálni, ha annak befogására valaki előáll egy megfelelő konstrukciójú (mondjuk fotorefraktív anyagokkal, toluolllal, naftollal vagy annak vmilyen származékával, mert az a sejtésem, hogy az aromás szénvegyületek delokalizált elektronjai "hevesebben" reagálnak, mint pl: a konjugált kettős kötéseké) kristállyal?"

 

Az a baj,hogy a kozmikus sugarak részecskéinek olyan nagy az energiája,hogy amikor molekulákkal ütköznek,akkor szétroncsolják őket,és ionizálják őket(szabad gyökök is keltkezhetnek átmenetileg).Például a kozmikus sugárzás egyes komponenei még az atommag nukleonjaiból is kiválhatnak részecskeesőt,amikor mindenféle egzotikus részecskék keletkeznek(pionok,müonok,kaonok,stb.)Illetve gyors neutronok(kozmikus sugárzás által keletkeznek) a levegő nitrogénjéből radioaktív szént hoz létre,amit majd belélegeznek az élőlények és amikor meghalnak,a mennyiségükből megállapítható a haláluk kora(ezekről szívesen mesélnék,ha érdekel).Illetve ilyen neutronok tríciumot is keltenek,ami a hidrogén radiokakítv iztotópja,Libby ennek a segítségével határozta meg a különböző bórféleségek korát.(ugyanez a Libby alkotta meg a radiokarbon kormeghatározást)

A konjugált kötésű molekulák a fény segítségével,az aromás vegyületek ultraibolya fénnyle gerjeszthetők(kivéve,ha az romás vegyületekben mondjuk bróm van,és a közelítő szimmetria miatt fénnyel is gerjeszthető).A klorofill is csak fénnyel(méghozzá vörössel) gerjeszthető,a kozmikus sugarak szétütik.Mivel ezzel a növények kevesebb széndioxidot tudnak a fotoszintézissel megkötni,a levél különleges módon véfkezik.Karotinoidokat épít a klorofill elé,mintegy védőréteget,és ez megvédi a nagyobb energiájú  a klorofillt szétverő sugárzásoktól.A karotinooidok a levél napszeművege.

Nagyon szívesen!Máskor is szívesen segítenék Neked!

Előzmény: Auréliusz (317)
Auréliusz Creative Commons License 2009.01.15 0 0 318
Sajnos nem tanultunk, és még egyszer köszi az eddigi fáradtságod.
Előzmény: Aurora11 (315)
Auréliusz Creative Commons License 2009.01.15 0 0 317
Szia Aurora11!

A mátrixokról és az operátorokról középiskolában nem tanultunk, de már sokszor találkoztam velük magasabb képzettséget igényelő könyvekben, önszorgalomból néztem át a Bólyai sorozatot is, de elhiheted, iszonyatos szenvedés volt, amíg egy feladatot megértettem. És persze, egy többváltozós, racionális nevezőjű tört függvény implicit alakját parciálisan deriválni most s tudnám. Mátrixokkal tudok műveleteket elvégezni, de a determináns értelmét (hogy miért van) nem tudom.

A pozitronokról úgy sejtem, hogy máig rejtélyes részecskének számítanak, pályájuk állítólag a visszafordult idő függvényében írható le. Habár erről biztosan sokkal többet tudsz. Ha a pozitron anyag jelenlétében hamarosan találkozik egy elektronnal, ilyenkor megsemmisül és nagy energiájú fotonokat kelt. Ez az annihiláció. Ezen alapszik a pozitronemissziós tomográf (PET). Eszerint az első három fizikai dimenzióban nem mutat semmiféle különösebb mozgást, de az időben csak visszafelé képes haladni? És milyen energiájú fotonokat kelt? Nem lehetne-e a jövőben pl.: műholdakat vagy űrszondákat a kozmikus-sugárzás energiájával táplálni, ha annak befogására valaki előáll egy megfelelő konstrukciójú (mondjuk fotorefraktív anyagokkal, toluolllal, naftollal vagy annak vmilyen származékával, mert az a sejtésem, hogy az aromás szénvegyületek delokalizált elektronjai "hevesebben" reagálnak, mint pl: a konjugált kettős kötéseké) kristállyal?

Köszönöm az eddigi ismeretterjesztést is, sokat tanultam belőle.
Előzmény: Aurora11 (316)
Aurora11 Creative Commons License 2009.01.14 0 0 316

Dirac az elmélete alapján következtetett a pozitron létezésére.Ezt semki sem hitte el neki,mert akkor még egyetlen antirészecskét sem ismertek.Azt hitték,hogy a matematika van sak túlhajtva.Amikor 1932-ben Anderson a kozmikus sugárzást vizsgálva felfedezte a pozitron létezését,akkor jöttek rá,hogy ez a Dirac által megjósolt pozitív elektron.Ez kellett ahoz,hogy a Dirac egyenlet különleges jóslása,azon túl,hogy a spinek is automatikusan jöttek ki belőle,nem kellett kézzel beleírni őket,mitna hgy előtti Pauli tette,hogy a tapasztalattal összhangban maradhasson a nemrelítivisztikus kvantummechanika.És a spinhez tartozik mágneses momentum is,ami arányos vele(és párhuzamos),az ezel kijött érték egyezett Einstein-de Haas mérésével(amit nem értettek,mert a vártnál kétszer akorát adott).A mátrixok 4x4-es kiterjedése nem a relativisztikusság miatt van.Ugyanis magasabb dimenziós antiszimmetrikus mátrixokkal is elvégezhette volna Dirac a gyökvonást,és az is jó lett volna Dirac-egyenletnek.Csak a 4x4-es a legegyszerűbb.Ugyanakkor az egész spinű részecskék Proca egyenletében szerplő mátrixok 2x2-esek,annak ellenére,hogy relativisztikusak.A nulla tömegű egész spinű részecskék Proca egyenlete egyenlő a Maxwell-egyenlettel,amiből kifejlődött a realtivitáselmélet,ami 2x2-es.Itt is lehetségesek magasabb ábrázolások.

Előzmény: Aurora11 (314)
Aurora11 Creative Commons License 2009.01.14 0 0 315
Az önadjungált és a hermitikus ugyanazt jelenti.Tanultatok a komplex konjugálásról?
Előzmény: Aurora11 (314)
Aurora11 Creative Commons License 2009.01.14 0 0 314

Szia Auréliusz!

 

Van egy olyan speciális relativitáselméleti összefüggés:

m02c4=E2-p2c2.Ez az ami a fénysebesség közelében is érvényes.Ami új sajátság az,hogy az energiát nem bontja szét mozgási és potenciális energiára,mindig a teljes energia számít.A nemraltivisztikus Schördinger-egyenlet egy olyan összefüggés,ami stacionárius esetben:E pszi=p2/2m pszi+V pszi,szóval nemrelativisztikus.Persze a megfelelő mennyiségek operátorok,például a p=hvonás/i nabla  differenciáloperátor.Dirac az m02c4=E2-p2c2 egyenletet követelte meg a Schrödinger-egyenletben,persze az operátorokra.De mivel az energia négyzeten van,ezért a gyökvonás itán lesz egy pozitív és egy negatív előjelű megoldás.E=+ vagy - gyökalatt(p2c2+m0c4).A negatív előjelű megoldást is el kell fogadni,hogy a Dirac-egyenlet mükődjön,de ezek a megoldások csak a Compton-hullámhosszú elektroállapotoknál jelennek meg.Ilyen energián zajlik le a párkeltés is.Dirac bevezette a pozitív elektron(pozitron) fogalmát,ami a negatív energiát hordozza.És a pozitív elektronokból álló tenger,amit Pauli elv stabilizál,éppúgy épül fel a tenger a pozitronokból,mint ahogy az atomok elektronfelhői az elektronokból.Az elektronnak azért kell nagy energiájúnak lennie,hogy pozitron keletkezzen,mert csak így tudja felgerjeszteni a pozitront a tengeréből,és ott egy lyukat hagyva vissza.Ehez nagy energiára van szükség,mert a pozitron a tengerében sokkal stabilabb állapotban van(alapállaptoban),mint azon kívűl.Ez a folyamat egyébként a párkeltés.Aztán a pozitron visszaesik találkozik egy elektronnal és annihilációnak felel meg(ez egybeesik azzal a folyamattal,hogy a pozitron visszaesik a tengerébe,betömve a lyukat).A Dirac-mátrixok annak eredményei,hogy így tudta őtletesen gyökvonás elvégezni.Mégis ebből az elméletből automatikusan kijön a spin elmélete,úgyis azokhoz ezeknek kétdimenziós változata,a Pauli-mátrix tartozik.Gyökalatt(alfa2+béta2)=alfa+béta.Ez a skalárok terén nem igaz,de az operátorok(amik reprezentációja a mátrix) lehetséges.Emeljük négyzetre.

(alfa+béta)2=alfa2+béta2+béta alfa+béta alfa.Szóval a gyökalatt(alfa2+béta2)=alfa+béta akkor igaz,ha béta alfa=- alfa béta.Ezek antikommutátora nulla,vagyis antikommutálnak.Vannak operátork,amik kommutálnak.azokra az igaz,hogy alfa béta=béta alfa.És vannak olyanok,amik se nem antikommutálnak,se nem kommutálnak.Erre példa az x-irányú impulzus,és az x-koordinátáa operátorai:

pxx-xpx=hvonás/i.Ez persze azért van,mert ilyenkor a px és x nem számok,hanem operátorok,és azoknál számít a sorrend.Ez azt jelenti,hogy a mátrix antiszimmetrikus.Vagyis ha felcseréljük őket is úgy szorzzuk össze őket,akkor az eredeti sorrendben szorzás minusz egyszeresét kapjuk.A mátrixok ugyanis nem felcserélhetők,ellentétben a skalárokkal.Az operátor olyasmi,mint a forgatás.Az operátorok szorzása egymás utáni elvégzésüket jelenti.Nem mindegy,hogy először lefekszel(ez is forgás) és  balra fordulsz,vagy először balra fordulsz és utána fekszel le.Két különböző álllapotba jutsz.Az operátorok vektorokra hatnak,elforgatják és megnyújtják őket.A kvantummechanmikában a mátrixos operátorok az állapotvektorokra hatnak.Persze vannak algebrai operátorok amik a hullámfüggvényekre hatnak.És vannak olyan operátorok,amik ezek keverékei(Pauli-mátrix,spinor).

Hermitikus a mátrix,ha sajátértékei valósak.Ez egy fontos valóssági feltétel,ugyanis azok a fizikai mennyiségek amiket mérni tudunk(ezek a kalsszikus mechanika hagyomás mennyisége)ezeknek az operátoroknak a sajátértékei.és ezeknek kötelező valósaknak lenni,mert a klasszikus mechanika eredményeinek teljesülnie kell.A klasszikus mechanika a kvantummechanika közelítése.De ennek ellenére mégis a klasszikus mechanika mintájára állították fel.

Tanultatok az operátorokról,és a mátrixokról?

 

Előzmény: Auréliusz (312)
Auréliusz Creative Commons License 2009.01.13 0 0 313
Ne haragudj, ez az ócska fórumszolgáltatás nem tudta megjeleníteni a matematika formáját az egyenletnek, de ha wikpédián rákeresel a Dirac-egyenletre, egyből kiadja.
Előzmény: Aurora11 (310)
Auréliusz Creative Commons License 2009.01.13 0 0 312

Dirac eredetileg a következő formában adta meg az egyenletet:

ahol:

m a részecske nyugalmi tömege c a fénysebesség, p az impulzus operátor, a redukált Planck-állandó, x és t a tér és idő koordináták.

Az egyenletben megjelenő további tagok a 4x4-es αk és β mátrixok, és a négykomponensű psi hullámfüggvény. A mátrixok mind hermitikusak (ami mátrixok esetén ugyanaz, minthogy önadjungáltak, továbbá antikommutálnak egymással:

ahol i és j különböző indexek 1-től 3-ig.

 

Nos bevallom őszintén, lilagőzöm sincs, hogy miként kell ezt érteni. A mátrixokról olvastam már eleget, de itt nem értem, mi a szerepük, és az impulzus operátorról is csak sejtésem van, hogy egy olyan geometriai tényez, mely befolyásolja a lendületváltozást.

 

KI tudnád bővíteni szerény és hiányos ismereteimet?

Előzmény: Aurora11 (310)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!