Keresés

Részletes keresés

szabiku_ Creative Commons License 2022.06.26 0 0 9497

Az impulzus, mint áram, a testeken belül is csakis előre áramlást jelent, nem oldalrát. Ez integrálisan vagy elosztottan sűrűségekben is egyformán ugyanígy van. 

Előzmény: construct (9494)
szabiku_ Creative Commons License 2022.06.26 0 0 9496

>>3 dimenziós térben tehát a 3 impulzuskomponens árama 3 vektort jelent

 

##Te nem érted, hogy mi a skalár, mi a vektor, és hogy mi a tenzor. Neked az egyik komponensei a másik fajta mennyiség. Nem értem, hogy nem látod be, hogy mekkora hülyeséget írsz:

 

>>Tehát minden impulzuskomponens egymástól függetlenül áramolhat.

 

##Nem, nincs ilyen. Az  mv  impulzus maga az áram, a mechanikai áram, vagyis a tömeg áramlása. Ez vektor mennyiség. 

 

>>S ezeknek az impulzuskomponenseknek az áramai is vektorok. Ugyanúgy, mint bármi skalármennyiség áramai, például a tömeg áramai, vagy a töltés áramai.

 

##Marhaság.

 

>>az impulzus áramlása

Leánykori nevén ez az impulzus átadása.

 

##Ebből az ordas bakidból már sehogy sem tudsz kijönni, hiába erőlködsz. Ne kezdjél el újabb téveszméket gyártani, hogy az "áramod" most már átadást jelent, mert az sem lesz jó. Az, hogy ütközéskor az impulzus részben vagy egészben átadódik, az egy dolog. Nálad eddig enélkül is "áramlik" az impulzus jobbra-balra, miközben előre-hátra.

 

>>Vagyis amikor egy kiterjedt test vagy rendszer egyik részéről impulzus kerül át a másik részére.

 

##Azzal sem tudod kimenteni magad, hogy akkor most eloszlásokban, kontinuumban gondolod csak el a dolgot (sűrűségekben). 

 

Meg kell értened, hogy mi a faék.

 

A  vi  vektort jelent, a  vivk  pedig tenzort (komponensekkel kifejezve)

Az  m  pedig skalárt.

Előzmény: construct (9494)
szabiku_ Creative Commons License 2022.06.25 0 0 9495

Az áramlásnak nincs külön másik áramlása. Az áramlás vagy sebesség vektorkomponensének nem áramlása a másik vagy ugyanaz a vektorkomponens. Ilyen formában sem:  vivk

 

Ez utóbbi egy másodrendű tenzor, nem vektor. A sorai vagy oszlopai sem vektorok. Az egész egy tenzor, komponensei pedig tenzorként transzformálódnak.

 

>>S ezek a vektorok azt mutatják, hogy az adott impulzuskomponens milyen irányban és milyen meredekséggel (milyen gradienssel) változik a testen belül.

 

##Hibán felüli hibából azonosítasz ide deriválásokat.

 

Feljelentgetés helyett inkább meg kellene értened, hogy mi a vektor, és mi a tenzor, és hogy ezek komponensei mit jelentenek matematikailag, hogyan transzformálódnak, stb.

Előzmény: újszuper (9492)
construct Creative Commons License 2022.06.25 -1 1 9494

Aki esetleg nem értené, mi is az impulzus áramlása, annak elmondom egyszerűen, bár nem teljesen általánosan:

Leánykori nevén ez az impulzus átadása.

Vagyis amikor egy kiterjedt test vagy rendszer egyik részéről impulzus kerül át a másik részére.

És mint Newton óta tudjuk, az impulzus átadása egy erővel egyenértékű.

Az  impulzus egy vektori mennyiség, aminek egyes komponensei egymástól függetlenül változhatnak, adódhatnak át. Tehát minden impulzuskomponens egymástól függetlenül áramolhat. S ezeknek az impulzuskomponenseknek az áramai is vektorok. Ugyanúgy, mint bármi skalármennyiség áramai, például a tömeg áramai, vagy a töltés áramai.

 

3 dimenziós térben tehát a 3 impulzuskomponens árama 3 vektort jelent a kiterjedt test minden pontjában. Amelyeknek összesen tehát 3x3 komponense van.

Előzmény: újszuper (9492)
újszuper Creative Commons License 2022.06.25 -2 0 9492

Ménes Dénes természetesen nem "kollégája" szabikunak, hanem csak egy másik nickje, amit addig használt, míg személyeskedés miatt kitiltották innen.

 

Szabiku alapvető félreértése pillanatnyilag ez:

"Az impulzus nem áramlik oldalra. Az áram csakis előre áramlik. (a sebességvektor előre mutat.) Ez egyértelmű."

Vagyis összetéveszti az mv impulzus vektort  az impulzus áramlásának vektorával, noha e kettő nagyon különböző. Egy kiterjedt test egyes pontjainak impulzusáramlási vektorai egyáltalán nem is a pont mozgásirányába mutatnak. Ráadásul minden ponthoz nem is egy-egy impulzus áramlási vektor tartozik, hanem egy-egy impulzusáramlási tenzor. Ami a legegyszerűbb esetben 3 áramlásvektorra bomlik, mégpedig az impulzus három komponensének áramait leíró három vektorra. S ezek a vektorok azt mutatják, hogy az adott impulzuskomponens milyen irányban és milyen meredekséggel (milyen gradienssel) változik a testen belül. Más szóval, milyen erők ébrednek benne.

 

Egy folytonos anyageloszlású test esetében igazából persze mindig impulzusáram-sűrűségekről és erősűrűségekről, azaz feszültségekről kell beszélni.

Előzmény: Ménes Dénes (9489)
szabiku_ Creative Commons License 2022.06.25 -1 1 9491

Nem áramlik oldalra. Az áram csakis előre áramlik. (a sebességvektor előre mutat.) Ez egyértelmű. 

 

Viszont construct szerint igen. És ez juthatott eszébe a kollégának. Gúnyos viccelődésnek szánta, hogy pl. construct azt gondolja, hogy az impulzuskomponensek oldalra is áramlanak. Azzal, hogy matematikailag képezzük a  pivk = mvivk tenzorszorzatot, még nincs olyan fizikailag, hogy az impulzus (vagy az áram) komponenseiben oldalra áramlik. Ez egy matematikai inspirált fizikai tévképzet.

Előzmény: Hónix (9490)
Hónix Creative Commons License 2022.06.25 -1 0 9490

"esetleg a mozgáspálya vonala a térben girbegurba"

 

Ebből következően az impulzus oldalra is áramlik(Elminster) szerint.

Előzmény: Ménes Dénes (9489)
Ménes Dénes Creative Commons License 2022.06.24 -1 2 9489

"haladási iránytól eltérő elmozdulás" olyan gyönyörű oximoron, hogy szerintem falvédőre kéne hímezni.

 

Az impulzus (mv) oldalra is áramlik. Nem tudtad? :DD

Előzmény: Elminster Aumar (9487)
Elminster Aumar Creative Commons License 2022.06.23 0 2 9488

"Mindenesetre megcsinálták a 3D transzformációs egyenletrendszert is. méghozzá itt, a Vector trasnsformations résznél."

 

Szép találat. Valóban!

Na, így kell engem megcáfolni.

Előzmény: pk1 (9485)
Elminster Aumar Creative Commons License 2022.06.23 0 0 9487

"az oldalra ható (a haladási iránytól eltérő) elmozdulásokat figyelmen kívül hagyod,"

 

A "haladási iránytól eltérő elmozdulás" olyan gyönyörű oximoron, hogy szerintem falvédőre kéne hímezni.

Szerintem te brutálisan kevered a mozgást az erővel és a gyorsulással. Erre vezet az, hogyha valaki átaludva az órákat, végül kegyelemketessel úszta meg az iskolai fizikát.

Előzmény: Hónix (9486)
Hónix Creative Commons License 2022.06.23 0 0 9486

Ha...

az oldalra ható (a haladási iránytól eltérő) elmozdulásokat figyelmen kívül hagyod, akkor a tényleges elmozdulás tetszőlegesen hosszú is lehet.

A legrövidebb elmozdulás (a szóbeszéd) ellenére a matematikai egyenes lesz.

A fentieket figyelmen kívül lehet hagyni, de akkor a Lorentz-transzformációnak semmi értelme nem lesz.

Előzmény: Elminster Aumar (9483)
pk1 Creative Commons License 2022.06.22 0 1 9485

Mindenesetre megcsinálták a 3D transzformációs egyenletrendszert is. méghozzá itt, a Vector trasnsformations résznél. De ez nem könyv, és nem magyarul van, így kérdező számára sajnos elérhetetlen.

Előzmény: Elminster Aumar (9483)
szabiku_ Creative Commons License 2022.06.21 0 0 9484

Ezt inkább speciális Lorentz-transzformációnak nevezik, és ebben az esetben is kétdimenzióban zajlik a hiperbolikus forgatás (mint általában a forgatás), csak többdimenziót tekintve speciális (tengely)helyzetben.

 

Igen, a felesleges matematikai bonyolításokat mindig célszerű elkerülni, és meg is teszik, főleg ha nincs is fizikai vonatkozása. 

Előzmény: Elminster Aumar (9483)
Elminster Aumar Creative Commons License 2022.06.21 0 0 9483

"A mozgás pályája, mint vonal egydimenziós (most az önmetszés okozta nehézségektől tekintsünk el)"

 

Erről van szó!

Ezért nincsen szükség a közismert "egydimenziós" Lorentz-transzformáció helyett háromdimenziós transzformációs egyenletrendszert készíteni. Mindig megvan a lehetőség, hogy a koordinátarendszert beforgassuk a pillanatnyi menetirányba az egyik (mondjuk x) tengelyével.

Az egész vita innen indult, hogy az olvtárs hiányolta az általános háromdimenziós Lorentz-transzformációt, én meg megírtam, hogy a fizikusok lusta disznók, ők mindig beforgatják a koordinátarendszert menetirányba, és dolgoznak az "egydimenziós" trafóval.

 

 

 

(A Lorentz-transzformáció abban az értelemben "egydimenziós", hogy a három térbeli irányból csakis egy esetében van transzformációs egyenlet, a másik két térbeli irányban a "transzformáció" szimpla egyenlőség: y=y' és z=z', ami ugye nem transzformáció.)

Előzmény: szabiku_ (9481)
Fat old Sun Creative Commons License 2022.06.21 0 0 9482

Teljesen tiszta a dolog, hogy itt mi micsoda.

 

A jelek szerint nem mindnekinek.

Előzmény: szabiku_ (9481)
szabiku_ Creative Commons License 2022.06.21 -2 1 9481

A mozgás pályája, mint vonal egydimenziós (most az önmetszés okozta nehézségektől tekintsünk el) (ez a kiterjedésére utal), de a pályaforma lehet többdimenziós (ez az egész alakjára utal).

 

Ezen nincs értelme vitatkozni. 

 

Hülye okoskodó kakaskodás az egész, amit ezen csináltok. Teljesen tiszta a dolog, hogy itt mi micsoda. 

szabiku_ Creative Commons License 2022.06.21 -4 0 9480

A szabadsági fokok száma, kérem. 

Fat old Sun Creative Commons License 2022.06.21 -1 2 9479

Akinél előfordul, hogy a dimenzió fogalma a geometriai egyeneshez kapcsolódik, annak célszerűbb lenne kerülni, hogy kioktasson másokat.

Előzmény: Hónix (9478)
Hónix Creative Commons License 2022.06.21 -2 1 9478

"Mivel minden mozgás "egydimenziós""

 

Csak azoknál, akiknél problémát jelent már a 2D is.

Ha a mozgás bármilyen kismértékben eltér a matematikai egyenestől, akkor már nem 1D-s, mivel egy olyan irányú mozgás iránya is van, ami nem fér bele az 1D-be.

Akinél ez előfordul, célszerűbb lenne kerülni azokat a mondatokat, ahol említésre kerül a "dimenzió" szó.

A választ (ami egyértelműen csak félrevezető lehet) erősen kerülni kéne.

 

Előzmény: Elminster Aumar (9472)
szabiku_ Creative Commons License 2022.06.17 -1 0 9477

Dimenziózavarban vagy. 

Előzmény: Elminster Aumar (9472)
szabiku_ Creative Commons License 2022.06.17 0 1 9476

Minkowski

Előzmény: mma (9474)
mma Creative Commons License 2022.06.17 0 1 9475

Pardon, Zeeman egy n-nel helyes.

Előzmény: mma (9474)
mma Creative Commons License 2022.06.17 0 0 9474

Azért ennyire nem egyszerű a dolog. Például 1+1 dimenziós Minkowki-térben nem igaz, hogy a kauzalitást megőrző automorfizmusok lineárisak, míg 3+1-dimenziósban igaz (ld. Zeemann Causality Implies the Lorentz Group, J. Math. Phys. 5, 490 (1964))

Előzmény: Elminster Aumar (9472)
szabiku_ Creative Commons License 2022.06.17 0 0 9473

A pillanatnyi sebesség, az pillanatnyi sebesség, nem pedig egyenletes sebesség. 

 

3D-s specrel nem lehetséges. A relativitáselmélet négydimenziós. (téridő)

 

Egydimenziós Lorentz-transzformáció nincsen. 

Előzmény: Elminster Aumar (9472)
Elminster Aumar Creative Commons License 2022.06.16 0 0 9472

De továbbmegyek!

Mivel minden mozgás "egydimenziós", vonal menti dolog, ezért bármikor használható az a matematikai trükk, hogy a 3D térben girbegurba vonal mentén megesett mozgást ds elemi szakaszokra bontjuk, és minden pillanatban úgy kezeljük, mint az adott pillanatban a vonalas pályagörbéhez húzható érintő-egyenes szerinti "egyenes vonalú, egyenletes" mozgás.

 

Röviden: mivel a mozgás vonalas, ezért semmi szükség nincsen 3D specrelre.

Elegendő az adott pályabeli pont ds környezetére felírt egydimenziós Lorentz-transzformáció alkalmazása, majd végül integrálás a teljes befutott pályára. (Vagy ha nem lehet függvényként felírni a dolgot, hogy egy integrálás alanya lehessen, akkor numerikusan lehet végigkövetni a girbegurba pályát a pillanatnyi "egyenes vonalú egyenletes mozgású" ds elemek sorozatát.

Előzmény: Elminster Aumar (9471)
Elminster Aumar Creative Commons License 2022.06.16 0 0 9471

"Elminster szerintem csak annyit akart mondani, hogy az egyetlen pont mozgását leíró trajektória (vonal) a térben mindig csak egydimenziós kiterjedésű objektum. Amit az idővel lehet paraméterezni. De bárhogy mozog is, és bármennyi ideig is, egy pont nem tud egy felületet vagy egy térfogatot bejárni, csak annak nulla felületű illetve nulla térfogatú részhalmazait."

 

Köszönöm!

Megnyugtató, hogy vannak olyanok is, akik értik amit írni szándékozom.

Előzmény: construct (9468)
szabiku_ Creative Commons License 2022.06.16 -1 0 9470

Akkor az elejét újrafogalmazom:

 

A relativitáselméletben nem használatos a mechanikai erőtér, . . . , nincs ilyen erőtér

 

Egy szó kimaradt. De ez látható volt. Erre meglovagoltátok.

 

"abból pályát számítani nem lehet a relativitáselméletben".

 

Az erőtérre (mechanikai) gondoltam. Tehát ami nincs (a relativitáselméletben), abból/abban pályát számitani sem lehet (a relativitáselméletben).

 

De visszarúgom a labdát. 

 

Én úgy veszem ki a reagálásodból, hogy szerinted meg van  F(x), F(x,t)  mechanikai erőtér(mint mező) a relativitáselméletben.

 

Te pontosan ezt akarod mondani, ugye? Hogy tévedek, mert van ilyen erőtér (mechanikai) (a relativitáselméletben) (muszály ezeket megjegyeznem, mert ha nem írom oda, akkor galád módon abba kötsz bele, hogy dehogy nincs, hát a newtoni mechanikában van, és azt mondod utána, még annyit sem tudok) (neem, az van, hogy ha netán kihagyok egy szót, akkor a többi mondat alapján te már nem tudod értelmezni az egészet). 

 

Szóval szerinted van. 

Fejtsd ki egy kicsit bővebben ezt az elgondolásodat! 

Előzmény: újszuper (9465)
szabiku_ Creative Commons License 2022.06.16 0 0 9469

Az Ok. A közegellenállás mechanikai ütközésen alapszik, és impulzusváltozást eredményez: dp/dt

 

De ahol konkrétan nincs  dp/dt  (nem jár ott az anyag), ott nincs erő. Így akartam érteni. Tehát mechanikai erőtér nincs a relativitáselméletben.

Előzmény: NevemTeve (9466)
construct Creative Commons License 2022.06.16 0 1 9468

Elminster szerintem csak annyit akart mondani, hogy az egyetlen pont mozgását leíró trajektória (vonal) a térben mindig csak egydimenziós kiterjedésű objektum. Amit az idővel lehet paraméterezni. De bárhogy mozog is, és bármennyi ideig is, egy pont nem tud egy felületet vagy egy térfogatot bejárni, csak annak nulla felületű illetve nulla térfogatú részhalmazait.

Előzmény: jogértelmező (9467)
jogértelmező Creative Commons License 2022.06.16 0 0 9467

A vonal girbe-gurbaságát nem tudod leírni 1 dimenzióban. És a mozgás leírásához eleve szükség van még az idődimenzióra is.

Előzmény: Elminster Aumar (9452)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!