Keresés

Részletes keresés

cíprian Creative Commons License 2007.11.19 0 0 1881

Pedig ez egyszerű. Nézzük mégegyszer.

 

Van egy gömbünk, a közepén egy kocka alakú üreg, amelynek minden oldala k hosszúságú Ebbe az üregbe betesszünk egy k oldalú négyzetlapot aszimmetrikusan,

olymódon, hogy k/3 magasságban legyen. A lap v vastagsága elhyagolható legyen, vagyis k>>v. (Nem akarok feleslegesen számolni, könnyen beláthatod, hogy nagyobb v vastagságra is hasonló következtetésre jutunk)

Ekkor a lapra merőlegesen  egyik irányban a lapra ható gravitációs vonzerő:  

n/(k/3)2 lesz.

A vele ellentétes irányba ható vonzerő pedig:

-n/(k3/2)2 lesz.

 

Azért mert az egyik kockaoldaltól k/3 távolságra, a másik kockaoldaltól pedig k/(2/3) távolságra van a lemez.

Ennek következtében a két ellentétes irányú vonzerő eredejő nem nulla lesz, hanem a közelebbik oldal irányába mutat a vonzerők eredője.

Vagyis az aszimetrikusan elhelyezett lap nem lebegni fog mint ahogy hiszed, hanem elmozdul a közelebbik kockalap irányában.

 

Erre kellene válaszolnod: szerinted is elmozdul?

Ha egyetértesz velem, áttérhetünk a gömbüregre is.

Előzmény: Gergo73 (1879)
Mungo Creative Commons License 2007.11.19 0 0 1880

Nem  vezetek félre senkit, csak a problémát két részre osztottam. Később rátérhetünk a gömb alakú üregre is.

 

Ahhoz képest, hogy a gömb alakú üreggel kezdődött az értetlenkedésed, már mindenféle üreggel próbálkozol, pedig a gömbnél egyszerűbben megoldhatő ebben a problémakörben nincs, már csak azért sem, mert ez egy régóta megoldott, ellenőrzőtt feladat.

Mivel a megoldás nem passzol a rögeszmédhez, hát megoldatnál itt a nagyérdeművel mindenféle egyebet, hátha elfáradnak. (Ami nem teljesen reménytelen várakozás, mert azért már látszanak a fáradás jelei.)

Most persze megint megsértődsz, de mit lehet tenni. Ha a matekkal alapszinten se boldogulsz, hiába is magyaráznak itt neked akármit, kb mintha a kutyámat akarnám óhéberre tanítani. Nyomorult egy kukkot se értene belőle. Viszont nem is akar szegény kioktatni senkit, legfeljebb szagológiából, mert ahhoz nagyon ért. (Abban persze nem is állok le vele vitatkozni.)

Azon sem gondolkodsz el, hogy a felhozott ellenérveket alátámasztó megoldások már legalább 300 éve ismertek, nyílván Newton is előre tudta, hogy itt az indexen egyszer majd vitatni fogja ciprian a számításai eredményét, így azután előre csatlakozott a cprian ellen összesküvőkhöz.

Az is elég snassz, hogy azok előtt nagyképűsködsz, akik azért tettek is valamit a tudásuk, ismereteik megszerzéséért, azt biztonsággal képesek kezelni, tulajdonképpen jószándékkal próbálják kijavítani a hibás elképzeléseidet, miközben te az alapokat sem ismered.

Ezzel a felkészültségeddel, legfeljebb valami félművelt társaságban lehet villogni, de ott se sokáig.

Előzmény: cíprian (1868)
Gergo73 Creative Commons License 2007.11.19 0 0 1879
Nem tudom, mit jelent az, hogy "a lemez egyik oldalára ható erő". Az eredőerő pontokra hat, nem oldalakra. Na most ha úgy gondolod, hogy a lemez egyik oldalán levő pontokra valamilyen konstans F erő hat, a másik oldalán levő pontokra pedig ennek 4-szerese (azaz 4F), akkor biztos rossz a válaszod. A lemez minden pontjára hat a körülötte levő tömeg összes pontja, nem csak azok a pontok, amik a lemez egyik vagy másik oldalán vannak. Ha a lemez d vastagságát nullához közelíted, akkor a két oldalán egy-egy szemköztes (d távolságra levő) pontjára ható eredőerők különbsége nullához tart (az eredőerő függvény az üregben lokálisan egyenletesen folytonos, hiszen úgy kapjuk, hogy egy lokálisan egyenletesen folytonos függvényt integrálunk egy kompakt halmazon), vagyis ha nemnulla erőkről van szó, akkor a hányadosuk 1-hez tart. Ez azt jelenti, hogy ha d kellően kicsiny, akkor a két erő hányadosa 0.99 és 1.01 között lesz, ami igen messze van a 4-től.
Előzmény: cíprian (1873)
mmormota Creative Commons License 2007.11.19 0 0 1878
Tényleg, tudsz olyan jelentősebb (sok matematikus érdeklődésére számot tartó) hamis matematikai tételt, amely hosszabb ideig elfogadott tudott maradni?
Előzmény: Gergo73 (1870)
pint Creative Commons License 2007.11.19 0 0 1877
kutató, mi?
Előzmény: cíprian (1875)
astronom Creative Commons License 2007.11.19 0 0 1876
Az az evidens, hogy megint nagy rajtad a mellény, sunyigyerek.
Előzmény: cíprian (1875)
cíprian Creative Commons License 2007.11.19 0 0 1875
Annyira evidens, hogy én szégyellem magam helyetted, amiért ezen vitatkozunk.
Előzmény: cíprian (1874)
cíprian Creative Commons License 2007.11.19 0 0 1874
Ha a lemez egyik oldala k/3, a másik oldala 2k/3 távolságra van a vele szemben levő kockalaptól.
Előzmény: cíprian (1873)
cíprian Creative Commons License 2007.11.19 0 0 1873

Örülj mert szokásom szerint elrontottam a számolást.

Helyesen:

 

n/(k/3)2 erő hat a lemez egyik oldalára és n/(k3/2)2 erő hat a másik oldalára.

A két erő aránya: 4

 

Tehát négyszeres erő hat a lemez annak az oldalára, amelyik közelebb van a kovkaüreg lapjához.

Előzmény: cíprian (1871)
Törölt nick Creative Commons License 2007.11.19 0 0 1872

Ez a kérdés mechanika nyelvére úgy forditható le: Adjuk meg a gravitációs erőtérben ( tehát a q térfogati megoszló erőrendszer terheli) annak a testnek az alakját, ami eredetileg gömb volt kivágva belőle egy téglatestet, poisson tényező mű.

Ekkor megmondható, bármely pontjának elmozdulása. A sarkokban lesz némi probléma azért.

 

Előzmény: Gergo73 (1870)
cíprian Creative Commons License 2007.11.19 0 0 1871

Azért egyszerűsítettem le a példát, hogy ne tudd elbonyolítani.

 

A lemez egyik oldalára n/k1/3 erő hat, a másik oldalára pedig n/k2/3 erő.

 

Nyilvánvaló, hogy a lemez a kockaüreg közelebbik lapja felé fog elmozdulni, mert arra oldalra k1/3-szeresen nagyobb erő hat.

 

Mindezzel együtt tiszteletem Leibnitz és Fubini uraknak, de most nincs rájuk szükség. :-)

Előzmény: Gergo73 (1870)
Gergo73 Creative Commons License 2007.11.19 0 0 1870
Kockaüregben valószínűleg a legtöbb pontban van gravitációs erő. Ezt ki kéne számolni integrállal. Nem lehet csak úgy ránézésre megmondani, hogy hol van és hol nincs gravitációs erő. Erre van kitalálva az integrál. Szóval nem láttam be, de valószínűnek tartom. A homogén gömbhéj üregéről meg nincs mit diskurálni, mert arról 320 éve bizonyítva van, hogy ott nincs gravitációs erő (a newtoni modellben). Tudod azért kiváló tudomány a matematika, mert ha ott bebizonyítunk valamit, akkor az úgy van, nincs helye vitának.
Előzmény: cíprian (1868)
pint Creative Commons License 2007.11.19 0 0 1869
rossz hírem van, gézoo lapja nem üzemel :(

http://gezoo.fw.hu/
cíprian Creative Commons License 2007.11.19 0 0 1868

Nem  vezetek félre senkit, csak a problémát két részre osztottam. Később rátérhetünk a gömb alakú üregre is.

 

Szóval egyetértünk, hogy a kockaüregben nem lebeg az aszimetrikusan elhelyezett lemez, hanem elmozdul?

 

Ha beláttad, hogy elmozdul akkor, áttérhetünk a gömbüregre is.

Előzmény: Gergo73 (1866)
pint Creative Commons License 2007.11.19 0 0 1867
nekem van egy másik javaslatom. legyen egy ikozaéder váz, aminek a rúdjai kör keresztmetszetűek, és átmérűjük az ikozaéder oldalhosszának 4.5%-a. legyen a belsejében egy aszimmetrikusan elhelyezett rombdodekaéder, valamint két golyórágó. gyorsítsuk az egész rendszert pi*e*g gyorsulással saggitarius felé. kérdés: milyen színűre kell festeni, hogy a nappal 4millió km távolságban termikus egyensúlyban legyen, ha hőmérséklete 66.7K.
Előzmény: cíprian (1865)
Gergo73 Creative Commons License 2007.11.19 0 0 1866

Simply Red az 1750-esben válaszolt már helyettem. A válasza tökéletes volt. szervetlen vegyész 1760-ban megerősítette a választ, szintén tökéletesen. Kifejtem, mert igen értetlen vagy. Ha egy homogén gömbből egy vele azonos középpontú kisebb gömböt vágsz ki, akkor a keletkező üregben nem lesz gravitációs erő. Ha valami mást vágsz ki (pl. egy téglatestet), akkor a keletkező üregben általában lesz gravitációs erő.

 

Egyébként az 1853-ban félrevezeted matmérnököt. Ugyanis nem egy szabálytalan üregről diskurálunk már napok óta, hanem a homogén gömbhéj esetéről. astronom gyakran idézi is tőled vastag betűvel a diskurzus alapját (legutóbb az 1858-ban). Azt állítottad, ha egy testet több hidrogénatom vesz körül gömbszimmetrikusan, akkor nagyobb gravitációs erő hat rá. Na most ez nem igaz Newton tétele értelmében. Ha a Föld köré építenénk egy 1000 km vastagságú homogén gömbhéjat, attól még a bányászok súlya egy pikonewtonnal sem növekedne. Egyébként ezt magyarázta XRive is az 1834-ben (és matmérnök kissé sete-sután az 1862-ben).

 

De mondom, ezek a dolgok 300 éve az egyetemi tananyag részét képezik. Newton végiggondolta és publikálta őket rendesen 1687-ben. És bizony az integrálszámítás hasznos tudomány, el kéne sajátítanod (1 évnyi intenzív munkával megoldható).

 

Előzmény: cíprian (1852)
cíprian Creative Commons License 2007.11.19 0 0 1865

Ez jó, mert egyetértünk.

 

Sajnos nem tudom lerajzolni, próbáld légyszi elképzelni.

 

Van egy gömb közepén egy kocka alakú üreg, a kocka élei k hosszúságúak.Ebben elhelyezünk aszimetrikusan egy lemezt, amelynek mérete majdnem k*k*0,1k. A lemez síkja legyen 3/4k távolságban a kocka aljától. A lemez súrlódásmentesen csúszkálhasson a kockában a lemez síkjára merőlegesen. 

Szerinted a lemez el fog mozdulni, vagy lebegni fog?

 

Szerintem teljesen nyilvánvaló, hogy a lemez a saját síkjára merőlegesen el fog mozdulni a kocka közelebbik lapja felé, hiszen abban az irányban nagyobb a rá ható tömegvonzás ereje.

Előzmény: Törölt nick (1862)
Mungo Creative Commons License 2007.11.19 0 0 1864

Felfogtad, amit mondtam a Fubini-tételről?

 

Szerintem ne reménykedj... :o))))

Ilyen gyors fejlődés azért nincs.

Előzmény: Gergo73 (1851)
Törölt nick Creative Commons License 2007.11.19 0 0 1863

Egyébként már kb 1 hónapja a skalárpotenciál a fő téma itt. Holott bérmely térfogati erőrendszert fel szoktunk bontani egy skalár és vektorpotenciállal kifejezett összegként. Mivel elgondolásunk szerint egy V zárt térfogatot A zárt felület határolja, annak pedig tetszőleges darabját felületi megoszló erőrendszer terheli,

a térfogatban pedig adott térfogati megoszló erőrendszer van.

Ha arról vitatkoznátok, hogy még a felületen megoszló erőpárok is vannak, akkor már érdekres lenne a téma:) Kb az a mai kutatások témája. (Na de ezek felett már rég elmúlt az idő.)

Törölt nick Creative Commons License 2007.11.19 0 0 1862

Persze hogy vonzani fogja Fij. Ugyananyival fogja a másik is Fji .

A kettő vektori összege nulla. A belső erőrendszer egyensúlyi. (Newton III). f12/m1=f22/m2 =állandó.

De ez kevés a mechanikai egyensúlyhoz. Az is kell, hogy a nyomatékok vektori összege nulla legyen. Sohasem az erőegyensúly a probléma. A gond az, ha ezek az erők nem egy hatásvonalba esnek. (Ez még ugyan nem sérti Newton III törvényét, de a nyomatékokkal gond van.)

Meg nem is két pontszerű modell között lép fel.(F=ma nem nulla a Nap középpontjára számolva. De a Naprendszer tömegközéppontja már jó koo. rendszer kezdőpont lenne)

De egy gömbben, gömbszimmetria miatt, tetszőleges p(r)= állandó ha r= állandó felületi vagy térfogati megoszló erőrendszert egyszerűen ki se számoljuk a gyakorlatban mert annak eredője 0.
Ezekről a számitásokról mérnökök ugy gondolkodunk, amit a jelenlevők közül kevesen ismernek. Kötött vektorrendszerek redukciója.(Egymáshoz képest mozgó koo rendszerekben is. Relativ mozgások.)

Előzmény: cíprian (1853)
pint Creative Commons License 2007.11.19 0 0 1861
otthon megkeresem neked. tán a zöldségboltba is betettem.
Előzmény: astronom (1859)
mmormota Creative Commons License 2007.11.19 0 0 1860
Nem fogja vonzani. Belinkeltünk két bizonyítást, a Principia-val együtt 3-at. Sima egyszerú matematikai bizonyítás. Mit lehet ezen nem érteni vagy vitatni?
Te meg itt nyomatod a téves elképzelésedet, mit sem törődve a fél oldalas egyszerú és világos levezetésekkel.
Előzmény: cíprian (1853)
astronom Creative Commons License 2007.11.19 0 0 1859
gézunak weblapja van?
Előzmény: pint (1856)
astronom Creative Commons License 2007.11.19 0 0 1858
Sunyítasz, cyprian, megint csak sunyítasz és mellébeszélsz.

Megismétlem, hogy mi "a vita alapja", ha te már szégyelled, akkor is:

Most tegyünk a hidrogénatomunk köré még több hidrogénatomot, szimmetrikusan, gömbalakban. Mindegyik új hidrogénatom gravitáló ereje hozzáadódik a tér egy-egy pontjának gravitációjához. Az első hidrogénatomunk a középen van, ahol kijelöltük a nulla potenciálú helyet, ott a legnagyobb az összeg, a középponttól kifelé csökken. Tehát csökken a gravitációs potenciál. A gömb legszélén a legkisebb, mert a gömbön kívül nincsenek hidrogénatomok.


Ott tartunk, hogy minden erőfeszítés ellenére sem tudod azóta sem, hogy vektorokat hogyan kell összeadni, és azt sem, hogy egyenlő számok különbsége nulla.

De azért nagy a szád, és te nevezel engem engem hülyegyereknek.
Előzmény: cíprian (1853)
mmormota Creative Commons License 2007.11.19 0 0 1857
Hogy vagy képes nem megérteni, hogy a gömbhéj üregében (gömbből koncentrikusan kivágott kis gömb) nincs erőhatás? Tökmindegy hová és mekkora próbatestet teszel az üregen belül, a gömbhéj nulla erővel hat rá.

Az 1749-ben felhozott példád nem gömbszimmetrikus. Vonzza, de teljesen érdektelen a vitatott kérdésben.
Előzmény: cíprian (1855)
pint Creative Commons License 2007.11.19 0 0 1856
vagy pl csinálhatnál weblapot, mint gézoo
Előzmény: cíprian (1853)
cíprian Creative Commons License 2007.11.19 0 0 1855

Bocs, az utolsó mondatot elírtam, helyesen:

 

"Tehát tömegvonzás van a kis és a nagytest között, ha aszimmetrikusan tesszük be az üregbe a kis testet. Ez az állításom."

 

A szimmetrikus elhelyezésről csak akkor beszélek, ha a 1749.-ben egyetértettünk.

Előzmény: cíprian (1853)
pint Creative Commons License 2007.11.19 0 0 1854
hogy vagy, ciprián? az összeadást nem akarod cáfolni? azzal lenne teljes a nap!
Előzmény: cíprian (1853)
cíprian Creative Commons License 2007.11.19 0 0 1853

Érdekelne a véleményed a 1749.-ről. Mert ez a vita alapja, és én azt állítom, amit a 1749.-ben. Biztos vagyok, hogy egyetértesz ebben velem, ezért továbbmegyek.

 

Képzeljünk el most egy gömbalakú üreget, amelyben egy tömör félgömb van. A félgömböt vonzani fogja a nagy gömb, és csupán a geometriai elrendezés gátol minket ennek fizikai bizonyításában. Azért írtam 1749.-ben négyszögletes üreget, mert itt nyilvánvaló, hogy a belső darabot csak erőkifejtés árán tudjuk áthúzni a másik oldalra. A számolás is könnyű itt. De az is nyilvánvaló, hogy félgömb esetében is vonzás van.

Tehát tömegvonzás van a kis és a nagytest között, ha szimmetrikusan tesszük be az üregbe a kis testet. Ez az állításom.

Előzmény: Törölt nick (1849)
cíprian Creative Commons License 2007.11.19 0 0 1852

Sosem válaszolsz egyenesen a kérdésemre.

 

A 1749.-re mi a válaszod?

 

Vonzza vagy nem vonzza?

Előzmény: Gergo73 (1851)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!