Keresés

Részletes keresés

Törölt nick Creative Commons License 2006.02.28 0 0 599
„Tekintsük azokat a felületeket, amelyeken a szökési sebesség egy bizonyos érték. Egymásba zárt felületek, mint a hagyma héja, szintvonal szerűségek csak 3d-ben. „


Rendben.... ez a Föld esetében is használatos geoid forma, ami jó analógiát mutat s forgó FL eseményhorizontjával.

A sarkoknál kisebb a gravitáció, emiatt az ekvipotenciális felületek lapultsága.

Egy műhold keringjen poláris körpályán gömbszimmetrikus gravitációs mező esetén!
Ekkor a műhold nyilvánvalóan az ekvipotenciális felületen halad.

Kérdés:

Milyen lesz a műhold pályája geoid felület esetén?
Követi a geoid alakot, az ekvipotenciális felületen halad, vagy ellenkezőleg, a sarkoknál, ahol az lapult magasabbra emelkedik, az egyenlítőnél a felület alá bukik újra és újra „átbökve” a felületet?


Létezik-e fizikailag ilyen tulajdonságú felület? Valójában léteznek azok a hagymahéjak?

„ nyilvánvaló, hogy alaktól föggetlenül, ebből belülről semmi ki nem jön, aminek nem nagyobb a sebessége mint 300 000 km/s...
...tökéletesen érthetetlen, miért tulajdonítasz jelentőséget a gömbszimmetriának ebből a szempontból.”

Ha a műholdpálya kérdését megválaszoltuk, minden a helyére kerül.

Laszilo
Előzmény: mmormota (595)
Törölt nick Creative Commons License 2006.02.28 0 0 598
Ez a horizontpajzs szerintem már nem piacképes típus. Két nem illeszkedő darabból lett összeeszkábálva, a Mark-II- es oda-vissza tüzelő részecskeágyúm belülről lövi rommá.:-)

Meglátjuk ki vásárol be. :-)
Előzmény: iszugyi (594)
iszugyi Creative Commons License 2006.02.27 0 0 597
Remélem számodra, hogy van azért megbizhatóbb portékád is.
Előzmény: mmormota (596)
mmormota Creative Commons License 2006.02.27 0 1 596

Vigyázz Laszilo, a Mmormota vállakozó, nehogy neked ilyesmit megpróbáljon eladni.

 

Üzletrontó!

Az általam gyártott horizont igenis nagyon megbízható, jobb mint a kevlar mellény, ezen a lézer se megy át. Ne riaszd el a lehetséges vásárlókat!

 

:-)

 

Előzmény: iszugyi (594)
mmormota Creative Commons License 2006.02.27 0 0 595

Ha megkérhetlek, próbáld meg most egy pillanatra félretenni az eseményhorizont definíciót, és úgy elolvasni amit írtam... hol a hiba?

Megpróbálom máshogy.

 

Azt, hogy hol a hiba, sajnos nem tudom megmondani. Ha egy alapjában alappjában logikus gondolatmenetben lenne egy törés, akkor meg tudnám mutatni. De a teljes  gondolatmenetedben nem ismertem fel a logikát, így nem tudom benne egy hibát mutatni.

 

Így megpróbálom más módon szemléltetni, egy hasonlattal. Hagyjuk az altrelt, sima Newton.

 

A szökési sebesség fogalmával gondolom tisztában vagy.

 

Tekintsük azokat a felületeket, amelyeken a szökési sebesség egy bizonyos érték. Egymásba zárt felületek, mint a hagyma héja, szintvonal szerűségek csak 3d-ben. 

 

Ilyen felületeket a Föld körül is ki lehet jelölni, nagy magasságban pl. egy 1km/h-sat, sokkal közelebb egy 2-t, a felszínhez közeledve egyre nagyobbakat, a felszínen ha jól emlékszem 11000 km/h körül van.

 

Most csináld ugyanezt a lyuk körül (jó kis képzavar, Newtonnál nincs lyuk, szóval egy sokkal sűrűbb és nagyobb tömegű valami körü)l. Valahol messze 1 km/h felület, közelebb egyre több, lesz egy olyan felület ahol 300 000km/s a szökési sebesség.

 

Ez a kis hasonlat persze nem bizonyítja, hogy egyáltalán létezik ilyen tulajdonságú felület. De ha létezik, akkor elég nyilvánvaló, hogy alaktól föggetlenül, ebből belülről semmi ki nem jön, aminek nem nagyobb a sebessége mint 300 000 km/s.   

Előzmény: Törölt nick (590)
iszugyi Creative Commons License 2006.02.27 0 0 594
"Az eseményhorizont az a felület, amelyen a belülről akármilyen irányból érkező fény sem jut át. "

Vigyázz Laszilo, a Mmormota vállakozó, nehogy neked ilyesmit megpróbáljon eladni.
Előzmény: mmormota (589)
mmormota Creative Commons License 2006.02.27 0 0 593

Két választásod van. Egyik, hogy elhiszed másoknak, létezhet egy olyan tulajdonságú felület, amelyen belülről nem juthat át fény. Tökmindegy, milyen alakú.

 

Vagy nem hiszed el, mélyebben meg akarod érteni. Akkor viszont nincs királyi út, tanulmányoznos kell részleteiben a Kerr megoldást.

 

Egyébként számomra tökéletesen érthetetlen, miért tulajdonítasz jelentőséget a gömbszimmetriának ebből a szempontból. Ez csak valami félreértés eredménye lehet.

Előzmény: Törölt nick (590)
iszugyi Creative Commons License 2006.02.27 -1 0 592
Xarban is van minkettö elmélet miatta.
Előzmény: iszugyi (591)
iszugyi Creative Commons License 2006.02.27 0 0 591
Lingarazda, Te kikerülöd a súlyos tömeg létezését, mint macska a forró kását!

A Standard Modellban nincs beépítve, az áltrel meg a térgörbülésével helyettesíti. Mindkettö elmélet kikerüli a súlyos tömeg létezését.
Előzmény: Törölt nick (587)
Törölt nick Creative Commons License 2006.02.27 0 0 590
„Az eseményhorizont az a felület, amelyen a belülről akármilyen irányból érkező fény sem jut át”

Ott valóban nem, de arrébb, ahol ez a „felület” sokkal alacsonyabban van?

Van ott valami felület? Nem inkább az a magasság, aminél lejjebbről „akármilyen irányból érkező fény sem jut át”?
Lehet, hogy igazad van, de magával a definícióval cáfolsz, ennek pedig az érvényessége csak gömbszimmetria esetén tekinthető globálisnak. (Szerintem:)

Ha megkérhetlek, próbáld meg most egy pillanatra félretenni az eseményhorizont definíciót, és úgy elolvasni amit írtam... hol a hiba?

Elnézést, de a tórusz alakzatot nem boncolgatnám, szemléletesebb egyszerű lapultsággal számolni.
laszilo
Előzmény: mmormota (589)
mmormota Creative Commons License 2006.02.27 0 0 589

Az eseményhorizont az a felület, amelyen a belülről akármilyen irányból érkező fény sem jut át. Ebből elég kézenfekvő, hogy nincs az, amit gondolsz.

 

Nem vetted a lapot a gyűrűvel: annyira belapulhat, hogy kilyukad a közepe. Mint egy fánknak. De nem annyira egyszerű a gyűrű - a közepén áthaladva, vagy a gyűrűt megkerülve nem ugyanoda lehet jutni.

Előzmény: Törölt nick (588)
Törölt nick Creative Commons License 2006.02.27 0 0 588
„Az eseményhorizont nem így működik. Ha egyszer valami bejutott mögé, az nem mehet ki. Pongyolán megfogalmazva ez az eseményhorizont definíciója (precízen az ún. csapdafelületekkel van definiálva, ahonnan hiába lőjük ki a fénysugarat, nem tud kijutni).”

Gömbszimmetrikus felület esetén nem is lehet vita tárgya.

Érvényes-e abban az esetben, ha az EH magassága változik?
Igen, de szerintem nem a teljes fekete lyukat tekintve.
„Ha egyszer valami bejutott mögé, az nem mehet ki...” ahol legalább olyan, vagy nagyobb sugarú az EH magassága mint ahol bejutott.
Eljuthat-e olyan területre, ahol az eseményhorizont kisebb sugarú? Szerintem igen.

Például egy forgó FL esetében az egyenlítőn R magasságban térül a fénysugár körpályára. A sarkoknál ez r (r<R) alacsonyabb magasságban valósul meg.
A sarkok fölött R magasságban haladó fénysugár még képes elhagyni a FL környezetét, de az egyenlítő fölött R magasságban haladó fénysugár már éppen körpályára kényszerül... nem távolodik, de NEM IS KÖZELEDIK a szingularitás felé.

Ebből következik, hogy az egyenlítőnél R magasság körül csapdába ejtett fény ha a sarok felé halad kiszabadulhat, mert r magasság fölé kerül, valahol R>= h>r sugáron.

Az EH képzeletbeli görbületének sugara a sarkok felé kisebb, mint az egyenlítőn haladva, fordított arányban a gravitációs mező mértékével. Abban a magasságban ahol az egyenlítőn éppen körpályán maradhat a fénysugár, véleményem szerint a sarkok felé haladva törvényszerűen kiszabadul, mert a gyengülő gravitációs tér nem képes még kisebb sugarú haladásra kényszeríteni, mint az egyenlítőn.
laszilo
Előzmény: Törölt nick (556)
Törölt nick Creative Commons License 2006.02.27 0 0 587
Egyébként pedig ezt kérdezted:

"Egyértelműen igent vagy nemet tudnál mondani a következő kérdésemre?

Álló rendszerből megállapítva, az álló testhez képest valóságos összehúzódás-e a mozgó test Lorentz-Fitzgerald kontrakciója? Természetesen inerciarendszerekről van szó."

És erre válaszoltam. Ez nem is azonos azzal, amit idéztél. Nem mindegy!
Előzmény: cíprian (585)
Törölt nick Creative Commons License 2006.02.27 0 0 586
Akkor jó. De nem a kérdésedre válaszoltam ám!

Nem azt írtam, hogy "összehúzódik". Azt írtam, hogy "rövidebbnek méri". Hogy ezt összehúzódásnak fogjuk fel, vagy sem, az bizony interpretáció kérdése. Nem véletlenül futottam le utána a többi kört :)
Előzmény: cíprian (585)
cíprian Creative Commons License 2006.02.27 0 0 585
Kedves Lingarazda!

A kérdésem ez volt:

A mozgó tárgy összehúzódik-e az álló rendszer álló tárgyához képest amikor mozog, az álló rendszer paramétereivel jellemezve?

A válaszod erre:

Én csak azt mondom, hogy a mozgó méterrudat az álló megfigyelő rövidebbnek méri. Ez tény, és kísérletileg igazolható (nem méterrudakkal, hanem pl. nagy energián ütköző atommagokkal).

Ezt az állásfoglalást vártam tőled.

Köszönöm a válaszodat.
Előzmény: Törölt nick (582)
Törölt nick Creative Commons License 2006.02.27 0 0 584
És pontosan itt látszik, milyen kulcsfontosságú dolgokra tapintottak rá a zen mesterek, de már maga Buddha is a megismeréssel kapcsolatban (és vedd hozzá Herbertet is)!

Nem a Fritjof Capra-féle "fizika taója" miszticizmusról beszélek pedig itt, hanem hogy bármilyen (értsd: bármilyen!) megismerés elmélyítéséhez ezen a ponton túl kell jutni. Ideértve az olyan "hétköznapi" eseteket is, mint az ember házastársa.
Előzmény: NevemTeve (562)
Törölt nick Creative Commons License 2006.02.27 0 0 583
Azonkívül nem követelheted meg, hogy mondjak igent vagy nemet, ha az alternatíva rosszul van megfogalmazva.

Pl. szembejön egy ember az utcán. Megölöd vagy futni hagyod? A válasz lehetőségek: előbbi/utóbbi. Mást nem felelhetsz.

Azzal, hogy elfogadod az alternatívákat, amiket a kérdés prezentál, elfogadod a világképet is, amiben az emberek gyilkolni való tárgyak.

Én ellenben kilépek a kérdésedből. Azt mondom, szimplán rossz az alternatíva.

Megjegyzés: érdemes lenne Frank Herbertet olvasni, a Dűne valamelyik folytatásában nagyon jól elemzi ezt a problémát. Olyan jól, amit még egyetlen filozófia vagy logika könyvben nem láttam.

Még egy megjegyzés: a kérdésből való kilépés nem jelenti az elfutást. Én nem a kérdésedre válaszolok, ami esetleg rosszul van feltéve, hanem a problémádra. Ha úgy tetszik, rád.

Javaslom Terebess Gábor: Folyik a híd c. könyvét és a bevezetőben adott elemzését a zen/csan anekdoták természetéről. Ez nem csak a zen sajátja, hanem ez a lényegi lépés minden igazi megismerésben. Nem a kérdésre, a problémára kell választ találni.
Előzmény: cíprian (561)
Törölt nick Creative Commons License 2006.02.27 0 0 582
Itt két szót nem definiáltál:

mi az, hogy valóságos?

mi az, hogy összehúzódás? (igen, ez is kérdés!)

Én csak azt mondom, hogy a mozgó méterrudat az álló megfigyelő rövidebbnek méri. Ez tény, és kísérletileg igazolható (nem méterrudakkal, hanem pl. nagy energián ütköző atommagokkal).

A többi interpretáció kérdése. Annak a kérdése, milyen koordinátarendszerben írod le azt, hogyan jön ki ez a mért érték a megfigyelő számára.

A megfigyelő szerint igenis összehúzódik a rúd, mert az azt alkotó atomok (magok és elektronok) elektromágneses tere relativisztikus torzulást szenved. Ezekkel a terekkel felírva a szilárdtest hullámegyenletét rövidebb egyensúlyi hossz jön ki.

A rúd szerint meg nem csinál ő semmit, de az a fránya megfigyelő más egyidejűséget használ, mint ő, ezért nem mér annyit, amennyi az ő tényleges hossza.

Na és most hogy döntöd el, melyik a helyes? A gond az, hogy a rúd is mérheti a megfigyelőt, és akkor minden pont fordítva alakul, tehát nem fogsz preferált értelmezést találni. Nincs is.

Ergó rossz az egész kérdésfeltevésed.
Előzmény: cíprian (561)
iszugyi Creative Commons License 2006.02.27 0 0 581
"A spec. rel.-nek az indítéka az volt, hogy a Maxwell-egyenletek nem adtak jó értéket a gyorsan mozgó töltésekre. A spec. rel. ezt megoldja, majd általánosítja a semleges anyagra."

De rosszúl általánosította! Nem vette észre, hogy súlyos tömeg is van!
Előzmény: cíprian (578)
cíprian Creative Commons License 2006.02.27 0 0 580
Azt hiszem nem értettél meg igazán.
Lorentz kidolgozta álló rendszerre a a Maxwell-egyenletek módosítását. Természetesen azzal a feltétellel, hogy a mozgó töltéshez képest a fény szintén c sebességgel halad, vagyis két mozgás között a Lorentz-transzformációt alkalmazta.

Einstein számára ez már konyhakész volt. Ő általánosította ezt, vagyis egy általánosított matematikai módszert vezetett be.
Előzmény: egy mutáns (579)
egy mutáns Creative Commons License 2006.02.27 0 0 579

Ez biztos történetileg így van, ahogy írod, ezzel nem is kívánok vitatkozni.

De a specrelnek lehet egy másik megközelítése is, ami számomra szimpatikusabb.

Éspedig: Milyen lehet az a világ, amiben egyrészt a fény minden inerciarendszerben azonos sebességgel terjed, másrészt pedig érvényes benne a relativitás elve.

Nos olyan, amiben pl. pont a Lorentz trafó írja le az inerciarendszerek közötti hely és időátszámítást, függetlenül attól, hogy Lorentz egész másra vezette le ezeket.

Üdv: egy mutáns

Előzmény: cíprian (578)
cíprian Creative Commons License 2006.02.27 0 0 578
A spec. rel.-nek az indítéka az volt, hogy a Maxwell-egyenletek nem adtak jó értéket a gyorsan mozgó töltésekre. A spec. rel. ezt megoldja, majd általánosítja a semleges anyagra. Ezért mondom azt, hogy vissza kell menni a kályhához.

A kérdést úgy is fel lehetne tenni, hogy reprezentálja-e a testek hosszúságát a benne levő töltések elektromos tere? Igent kell válaszolni, mert a spec. rel. igazoltnak tekinthető. Akkor pedig a tárgyak mozgás közben belapulnak az állóhoz képest.
Az természetes, hogy a vele együtt mozgó tárgy ugyanolyan mértékben lapult.
Előzmény: egy mutáns (577)
egy mutáns Creative Commons License 2006.02.27 0 0 577

Hát ennek valóban az áll a hátterében, hogy a fizikát még csak nem is ugatom, inkább csak makogom, a fizikatörténetet pedig méginkább.

De a specrel fogalmi köre, axiómái, matematikai eszköztára elég egyszerű, ide belebátorkodom, de ide is csak a legegyszerűbb példák erejéig, mint pl. egy pálca hossza.

A látókörtágítást köszönöm, habár a mozgó töltés erőteréhez nemigen tudnék hozzászólni, csak amúgy specrel-esen.

Üdv: egy mutáns

Előzmény: cíprian (575)
iszugyi Creative Commons License 2006.02.27 0 0 576
Menj el Brémába és revidáljad Te a nézetedet a súlyos és a nyugvó tehetetlen tömeg egyenlöségéröl ejtökísérlettel, mielött a laikusok ki nem nevetnek!
Előzmény: Törölt nick (559)
cíprian Creative Commons License 2006.02.27 0 0 575
A kérdésed második részére azt válaszolom, hogy kizárólag a spec. rel.-ben gondolkozol.

Kicsit tágítom a látókört.
A Maxwell egyenletek szerint a mozgó töltés elektromos tere belapul. Ez ugye valódi belapulás az álló töltéshez képest.
Ne felejtsük el, hogy ezt a fizikai tényt általánosította Einstein.
Előzmény: egy mutáns (571)
mmormota Creative Commons License 2006.02.27 0 0 574

Ugyanezen okból nem célszerű definiálatlan, de erős köznapi áthallással rendelkező fogalmakat ide keverni. Nem lehet az ilyen fogalmakkal megfogalmazott kérdésekre igen/nem jellegű választ adni.

Ezért hoztam fel Astroian példáját. Ő definiálta az egyik ilyen köznapi fogalmat, és én erre alapozva tettem egy korrekt állítást. Igen ám, de ő később az állítást önmagában, a fogalom egy másik köznapi értelmére alapozva boldogan felhasználta valamire, amire nem igaz.

Előzmény: cíprian (572)
egy mutáns Creative Commons License 2006.02.27 0 0 573
De jó.
Előzmény: cíprian (572)
cíprian Creative Commons License 2006.02.27 0 0 572
Nem jó a hasonlat.
A jogászoknál tilos hasonlatokat használni. Nekük van igazuk :-)
Előzmény: egy mutáns (571)
egy mutáns Creative Commons License 2006.02.27 0 0 571

A következőről beszéltek:

Egy pálca hossza oldalról nézve 1 m.

Egy pálca hossza ferdén nézve 0,5 m.

Valóságos-e a két hosszadat?

 

 

Látszik, hogy a keérdésfeltevésben van a hiba. A specrel-es kérdésfeltevés így hangzik:

Egy pálca két vége x koordinátáinak különbsége y irányból nézve 1 m.

Egy pálca két vége x' koordinátáinak különbsége y' irányból nézve 0,5 m.

Valóságos-e a két dx?

 

egy mutáns

Előzmény: cíprian (568)
Yorg365 Creative Commons License 2006.02.27 0 0 570
És az álló tárgy összehúzódik-e a mozgó rendszer mozgló tárgyához képest amikor áll, a mozgó rendszer paramétereivel jellemezve?
Előzmény: cíprian (569)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!