Keresés

Részletes keresés

iszugyi Creative Commons License 2006.02.05 0 0 16485
Ha már olyan bizonytalanság van a sebesség mérésnél, mi értelme van két v sebességgel mozgó inerciarendszerek bevezetése, és honnan jön az 'inercia' fogalma egyáltalán?

Az egyenletesen egymáshoz képest gyorsuló inerciarendszerektöl ne is beszéljünk.
Előzmény: muallim (16483)
habár Creative Commons License 2006.02.05 0 0 16484
off..
Ne haragudjatok, de olyan jókat tudok magamon nevetni...Ti hogy vagytok ezzel...?
on
Előzmény: habár (16481)
muallim Creative Commons License 2006.02.05 0 0 16483
ne szomorkodj sok fiatal vénebb és sok vén fiatalabb egymásnál. ( érted?)
Előzmény: habár (16481)
iszugyi Creative Commons License 2006.02.05 0 0 16482
Rájöhetnél, hogy a sebesség egyenleténél

v = (x2-x1)/(t2-t1),

már probléma van, mert az x1,t1 és az x2,t2 pontokat sem tudod kellö biztonsággal egy makroszkópikus testnél megmérni. (Egy mikroszkópikus részecskénél meg elvi lehetetlenség.)
Előzmény: iszugyi (16479)
habár Creative Commons License 2006.02.05 0 0 16481
Köszönöm Muallim.
Illetlenség mit teszek, és szép, hogy Ti szóba álltok velem.
Én meg ezt azzal hálálom meg, hogy komiszkodok.
Mert őszintén- ha mindenki jól nevelt, akkor ezzel úgy hiszem, valamiféle hiányt pótlok, persze, csak amíg bírom.
Mert komisznak lenni se könnyű, és ahogy öregszem, és gyengülnek a kezeim, hát...
Előzmény: muallim (16478)
habár Creative Commons License 2006.02.05 0 0 16480
"Habár, és milyen pontosan tudod megadni az
x-et, a t-t és a v-t
az egyenleteidben egy makroszkópikus testre vonatkozóan?"

Hát kellene rajta keressek egy fixen pontos pontot. Csak találok majd, vagy nem?
Mondjuk, egy részecskét, akármilyen pirinyót.
Hogy is mondta valaki.
"Csak találjak egy fixpontot, azonnal..."
De nem talált szerencsére, így akkor még megusztuk...
Előzmény: iszugyi (16474)
iszugyi Creative Commons License 2006.02.05 0 0 16479
Mond meg milyen pontosan tudod egy test helyét, sebességét és a hozzá tartozó idöt megmérni, Ha ezeket megállapítottad, azután folytasd az egész vitát a SRE-röl.
Előzmény: iszugyi (16475)
muallim Creative Commons License 2006.02.05 0 0 16478
én a logikádban csak a P(x,t)-ből levezetett P(v=x/t)-t tartom tévesnek, az indexek meg figyelmetlenségből ugrálnak.
Előzmény: habár (16477)
habár Creative Commons License 2006.02.05 0 0 16477
Abban a formában, ahogyan most igényled, már korábban levezettem.
De ha Te nem téveszted el az indxet, miért nem írod le Te.?
Ha meg nem írsz képletet, hogyan vitatkozhatsz?
Egy hibás képlet is több információt ad, mint akárhány kijelentés.
Előzmény: muallim (16476)
muallim Creative Commons License 2006.02.05 0 0 16476

Ne haragudj, amíg az indexeket eltéveszted nem érdemes képletekkel jönni, most is azt mondom mint az elébb, hogyha egy esemény vagy téridőpont koordinátája P(x,t), akkor a P pont sebessége nem x/t, hanem dx/dt. Te meg következetesen ezt hajtogatod :dehát v= x/t vagyis a szorzat nulla értékű.

Ezért téves következtetésekre jutsz és azt fűzöd tovább.

Előzmény: habár (16469)
iszugyi Creative Commons License 2006.02.05 0 0 16475
Ne folytasd a parasztvakítást!
Előzmény: iszugyi (16474)
iszugyi Creative Commons License 2006.02.05 0 0 16474
Habár, és milyen pontosan tudod megadni az

x-et, a t-t és a v-t

az egyenleteidben egy makroszkópikus testre vonatkozóan?
Előzmény: habár (16469)
habár Creative Commons License 2006.02.05 0 0 16473
javítva: (d'x*d't)/(dx*dt)
Előzmény: habár (16472)
habár Creative Commons License 2006.02.05 0 0 16472
Most tehát az az állításom, hogy a LORENTZ transzformációban látens benne van a hosszidő koordináta C=dx*dt, [x*t; (d'x*d't)/(d'x*d't)], ami mint sebességfüggvény bontható ki.
Ha ezt elfogadjátok, felmerül még a kérdés, hogy ez határozatlan, vagy határozott.
Előzmény: habár (16470)
iszugyi Creative Commons License 2006.02.05 0 0 16471
"A kettö valószinüség között nincs apriori összefüggés."

Na ezt helyesbíteni kell.

Ha egy testeket felossztjuk a négy stabil elemirészecskére (e, p, P, és E), akkor mind a négynél (k=1,4) a folytonotossági egyenlet

d/dt ró(X;k) + div j(X;k) =0

érvényes mint mellékfeltétel. (A stabilitásukat a fizika 10^91 évre saccolja).

De a testek sebességét és gyorsulásátál 'elfelejtette' a fizika megmérni pl. a gravitációs mezöben, tehát a szabadesésnél, úgy 10^-3-nál pontosabban. A SRE érvényessége kérem szépen még parasztvakításnál is rosszabb.

Nem értem az egész ebben a topicban folytatott vitát az SRE érvényességéröl, az ilyen makroszópikus bizonytalanság fényében.
Előzmény: iszugyi (16465)
habár Creative Commons License 2006.02.05 0 0 16470
Muallim.-
Ugyanezt kapom, kaptam a dx-, dt -re is.
Előzmény: muallim (16468)
habár Creative Commons License 2006.02.05 0 0 16469
Mert az előző hozzászólás csak egy levezetés egyik fele.
Ha elfogadjátok. A másik fele szintén ugyanonnan, hasonlóan:

x'=(x-v*t)/(1-(v/c)^2)^0,5
Beosztva x-el:
x'/x=(1-v*t/x)/(1-(v/c)^2)^0,5

Most vegyük az út időarány szorzatát.

x'/x*t'/t= 1-v*t/x

dehát v= x/t vagyis a szorzat nulla értékű.

Tehát az útidőarány szorzata nulla, amikor v=x/t.
Ennek nyilván megvan a megmagyarázható oka.

Mintahogy biztosan más, ha v<>u= x/t.
És vannak határértékei v=c; u=x/t=c szélsőségeknél, amelyek másképpen, de szinén levezethetők,.
De végül is az útidő(arány) mint változó (C=x*t) tagadhatatlanul létezik, mint három sebesség fügvénye:
c: fénysebesség állandó
v: a K' koordinátarendszer sebességes, mint változó
u=x/t (mondjátok meg Ti, hogy Mi?), szintén mint változó.

Van tehát egy "C" hosszidő változónk, amely két sebesség függvénye, amelyek ha meghatározhatók, a C is határozott, ha nem, akkor a C is határozatlan.

Amúgy tudhatjuk még a "C" ről, hogy v=u esetén nulla értékű, és ha nem dorongoltok le, mint mindig, néhány pontja még kiszámítható.
Előzmény: habár (16467)
muallim Creative Commons License 2006.02.05 0 0 16468
x, és t egy esemény koordinátái, az x/t az nem az esemény sebessége !, mert az esemény sebességére v=dx/dt az igaz.
Előzmény: habár (16467)
habár Creative Commons License 2006.02.05 0 0 16467
Szóval akkor az 1921 es függelékéből kimásolva:

t'=[t-v*x/c^2]/(1-(v/c)^2)^0,5

Ez most jó és hiteles kell hogy legyen, mint kiindulóadat.

Beosztok t-vel, csak ennyit teszek.
t'/t= [1-v*(x/t)/c^2]/(1-(v/c)^2)^0,5

idáig csak jó?
Most azt mondom, legyen v=x/t, éppen, csak valamiért....

akkor
t'/t=[1-(v/c)^2]/(1-(v/c)^2)^0,5=(1-(v/c)^2)^0,5

Ilyenkor könnyű hibázni, de Ti úgyis kijavítotok.

t1/t=(1-(v/c)^2)^0,5 vagyis éppen a Lorentz faktorral egyenlő, de mint szorzóval.
Egyébként, az időarány rövidül, Ti is állítjátok, az ikernél- nem lehet rossz.
Nézem jobbról, nézem balról. Hol hibáztam? Egyáltalán, hibás ez?

Hiszen csak annyit tettem, mint korábban is, hogy azt mondtam, hogy x/t=v
Mert továbbra is úgy gondolom, hogy az események a sebességgel, a k' koordinátatengely jelölt pontjainak áthaladásával egyidejűek. Így ilyen azonosság felírható.
Vagy azt az esetet, hogy v=x/t ki kell zárni? Ha nem kell kizárni, jogos, hogy ekkor az időarány így változik? Mi történik, amiért jogos?
Mert az eredeti levezetésemben is pont ez volt, csak dt különbségként.
Előzmény: habár (16463)
muallim Creative Commons License 2006.02.05 0 0 16466
én meg azt gondoltam, hogy a Minkowszki téridő axiomatikusan a részecskék között is érvényes
Előzmény: iszugyi (16465)
iszugyi Creative Commons License 2006.02.05 0 0 16465
A makro fizikára alapuló SRE, a pontosnak vélt hely és idö méréssel, az idöszinkronizációval csak parasztvakítás.

A részecskefizika kimutatja, hogy a részecskéknél a hely csak kb 10^-8 cm-es és az idö csak kb. 10^-8 s-os bizonytalansággal mérhetö meg.

A részecskéknél csak valószinüségekröl beszéletünk a fizikában, hogy hol tartozkodik és mekkora a sebessége. A kettö valószinüség között nincs apriori összefüggés.
Előzmény: muallim (16462)
Dubois Creative Commons License 2006.02.05 0 0 16464

"Az SRE-t nem kell megérteni, ezt nem is lehet "megérteni"!"

 

Ne vetítsd ki azt, hogy neked nem sikerült.

Üdvözletét küldi von Mettenheim és Vukelja. :))

Előzmény: iszugyi (16461)
habár Creative Commons License 2006.02.05 0 0 16463
"Gonodolod, hogy el lehet neki magyarázni a "lineáris tér" mibenlétét?"

Attól függ.

Jaj, a képletben igazad van!

Úgy írtam, de nem úgy gondoltam, az 1-es véletlenül maradt le, pont ahogy Te is jól "Gonodolod", de ezt írod helyette, de én jól értem mégis.
Az első levezetésemben szereplő képletet pedig a négyjegyüböl másoltam ki.
Lehet hogy ott hibás?
De most előkerestem Albert Einstein 1921-es "Über die..." fordítását.
Bár a fordítás sem biztos. Ezekután semmi sem az.

Előzmény: NevemTeve (16454)
muallim Creative Commons License 2006.02.05 0 0 16462
akkor egy részecske téridő koordinátáit miként adod meg a határozatlansáf figyelembevételével
Előzmény: iszugyi (16460)
iszugyi Creative Commons License 2006.02.05 0 0 16461
Az SRE-t nem kell megérteni, ezt nem is lehet "megérteni"!
Előzmény: habár (16459)
iszugyi Creative Commons License 2006.02.05 0 0 16460
A Minkowski tér-idö világpontok koordinátáit, aminek a létezését axiómatikusan feltételezhetünk. Másra nem vagyunk felhatalmazva.
Előzmény: muallim (16458)
habár Creative Commons License 2006.02.05 0 0 16459
"A részecskéknek meg sem a helye sem a sebessége elvileg nem mérhetö meg pontosan."

Hát ez a határozatlanság csak a mikrovilág tulajdonsága? Tettem fel a kérdést.


De mert még mindig nem értem az SRE-t, lehet, hogy hibáztam. Meg akarom érteni, hol.
Előzmény: iszugyi (16457)
muallim Creative Commons License 2006.02.05 0 0 16458
akkor a képletben milyen változókat írtál fel?
Előzmény: iszugyi (16457)
iszugyi Creative Commons License 2006.02.05 0 0 16457
A Mikowski tér-idö invariáns metrikáját

s(X1,X2) = (x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2 -c^2 (t^1-t2)^2

a két fundamentális mezö (az e.m.- és a gravitációs mezö) okozza az állandó c sebességgel. Más nem is vezethetö le a részecskék kölcsönhatásából.

A részecskéknek meg sem a helye sem a sebessége elvileg nem mérhetö meg pontosan.

Ezekre kell a fizikát felépíteni, semmi másra.
Előzmény: habár (16456)
habár Creative Commons License 2006.02.05 0 0 16456
Gnudist
Bárhogy forgatjuk, külön dimenziónak külön jelölése kell hogy legyen!
Ha neked három dimenzió kell valamely számításhoz, vagy négy, úgy légyszíves alkalmazni ugyanannyi jelölést.
Ha ezt nem teszed, akkor csak annyi dimenziód van, ahány jelölést alkalmazol.
A Minkowski térben ez csak kettő: (1); és (i).
Ezért az kétdimenziós, akárhányat képzelsz bele.
A DNS molekula térbeli alakzat, mégis szekvensekre bontható, és bármelyikre megmondhatod, melyik létrafokról van szó, mi az eltérés.
És mégcsak nem is gondolsz arra, hogy ehhez x,y,z-t használj. Ki is nevetnének.
Amúgy meg a tér valós szerkeztéről, határozottságáról elég sokféle olvasható.

Persze használhatsz tőlem bármely számot, ki mondta hogy csak egészet kell?

Csinálhatsz olyan számot, amelynél a tizedesvessző után van a második koordinátád.
Csinálhatsz bármely algoritmust a számok távolságának meghatározására.
A legegyszerűbb algoritmus egy táblázat, amiben a pontok közötti távolság számított, vagy bocsánat- lemért értéke van.
Csak egyet nem tehetsz: hogy azonos (jelölésű) dolgokat különbözőnek nevezz, ahogyan one zsinor teszed!
Nem azt mondom tehát, hogy legyen háromnál kevesebb koordinátád, ha annyi kell hogy legyen, hanem azt, hogy nevezd őket úgy, ahogyan illik, és ne zanzásítsd.
De mert a matek erre Téged felhatalmazott, és sokkal képzettebb vagy nálam, outsidernél, ezt a természetes észrevételem egy- kétszer még hangoztatom, azután abbahagyom. Pedig, ha körülnézel- ez az egyik a kevés téma közül, ami a cserebogarak halhatatlansága mellett itt vitára érdemes.


"Jaaaa, értem. "
(Félre)


Előzmény: Gnudist (16451)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!