Keresés

Részletes keresés

iszugyi Creative Commons License 2006.02.06 0 0 16503
De ne is vitakozzunk a newtoni és einsteini elméleteken sem, az egyik egy durva közelítés a másik meg egy kátyú. A lényeg az hogy egyik sem érvényes.
Előzmény: Gergo73 (16502)
Gergo73 Creative Commons License 2006.02.06 0 0 16502
Ne a szavakon vitatkozzunk. A newtoni elmélet szerint a dudaszó percenként érkezik a füledhez a felvázolt kísérletben, az einsteini szerint nem. Ez a lényeg, nem az hogy milyen szavakkal írod le ezt a jelenséget.
Előzmény: Astrojan (16501)
Astrojan Creative Commons License 2006.02.06 0 0 16501

Na látod, pontosan nem arra, hogy az előbb egy perce egymás mellett összehangolt óránk járása megváltozott volna. Hanem arra, hogy másként látom, ha amaz szalad.

 

Legyen egy baleset. Legyen tíz szemtanú. Az egyik szemből látta a balesetet, a másik oldalról, a harmadik a tizedik emeleti erkélyről, a negyedik éppen a földet kémlelő Hubble teleszkópon látta, az ötödik csak hallotta, a hatodik a TV híradóban látta, a hetedik éppen részeg volt de látott valamit, a nyolcadik okozta a balesetet, a kilencedik elszenvedte...

 

Mindegyik mást látott.

 

Szerinted hányféleképpen történt meg a baleset ???

 

Előzmény: Gergo73 (16500)
Gergo73 Creative Commons License 2006.02.06 0 0 16500
Hadd kérdezzek tőled valamit. Ha a barátodat megkéred, hogy a kocsijával körözzön a házad körül (tőled állandó távolságot tartva) és a saját órája szerint minden percben dudáljon egyet, és te 55mp-ként hallasz dudaszót, akkor mire következtetsz? Nem arra, hogy a te órád lassabban jár, mint a barátodé (55/60-szor)?
Előzmény: Astrojan (16499)
Astrojan Creative Commons License 2006.02.06 0 0 16499

Pontosan azt nem értem, hogyan lehet már százszor elmagyaráztam:

 

a keringő órán ugyanazon fizikai folyamatok nem indukálnak szaporább ritmust (rezgést), mint a földi órán.

 

Hanem az ugyanolyan ritmusú óra a földről másképpen látszik.

 

Érzed, hogy a földön mért érték mind a két esetben ugyanaz lesz ?

 

Ilyen egyszerű a probléma, élethalál kérdés, hogy ki ne derüljön melyik variáció az igaz. Mert ha kiderül, elbukik a relativitáselmélet. (Az SR már elbukott itt)

 

Ezt jósolta az ÁR cseppet sem triviális formában (és semmilyen más elmélet nem jósolta ezt),

 

Minden más elmélet sokkal okosabb, hogy ilyen butaságot jósoljon.

 

és ez egyezik a tapasztalattal.

 

Nem egyezik a tapasztalattal.

Mert vagy az az igaz, hogy

a. csak másképpen látszik

b. vagy pedig szaporábban rezeg

 

Ha a b. válasz az igaz, csak akkor egyezik a tapasztalattal.

Előzmény: Gergo73 (16498)
Gergo73 Creative Commons License 2006.02.06 0 0 16498
Astrojan, tényleg nem világos számomra, mit nem értesz. Veszel két azonos atomórát. Egymás mellett azonosan járnak, azonos ritmust (rezgést) diktálnak. Ha az egyiket keringő pályára állítod a Föld körül, akkor folyamatosan gyorsabban jár, amit úgy értsél, hogy ha a pályájának azonos pontjára ér kétszer, akkor a köztük eltelt időt a keringő óra mindig kevesebbnek regisztrálja, mint a földi órák. Más szóval a keringő órán ugyanazon fizikai folyamatok szaporább ritmust (rezgést) indukálnak, mint a földi órán. Ezt jósolta az ÁR cseppet sem triviális formában (és semmilyen más elmélet nem jósolta ezt), és ez egyezik a tapasztalattal.
Előzmény: Astrojan (16497)
Astrojan Creative Commons License 2006.02.05 0 0 16497

Ahhoz meg, hogy valaki azt higyje, hogy a napi 1 nsec nagyságrendűen pontos műholdórákat folyamatosan naponta 38000 nanosec-el korrigálnák, valami elképesztően bugyutának kellene lennie.

 

..összes holdat már a Földön véglegesen a relativisztikus korrekció szerint lassított órával lövik fel. Tehát korrigált óra...

 

Na most itt kérlek valami elképesztő zavar van a fejedben, ha ezt a kettőt össze bírtad zagyválni, mert az első állítás kizárja a korrekciót, míg a második állítja, hogy be van szerelve a napi 38 microsec állandó korrekció ami semmitől sem függ, hanem állandóan nap mint nap, mindennap megteszi a 38 korrekciót, magyarul 38 microsec/nap. Ez szerinted nem korrekció? Nem is értelek, úgy érvelsz mint egy gyagyás. (Szólj ha csak eltévesztetted, mert akkor nem lovagolok rajta)

 

Én ugyanis abban az értelemben használom a korrekciót, hogy az minden nap megtörténik. Vagy talán úgy gondolod, hogy egyszer előreállították 38 microseccel a GPS órát és kész, soha többet nem kell korrigálni ? Felejtsd már el a minor korrekciókat, a 38 -ra koncentrálj.

 

Annyit pontosítanék, mert lehet, hogy téged ez zavar:

 

Teljesen mindegy, hogy a földön a master clock#2 -t erőszakolják meg, (ahogy én a példámban megadtam) és ezt az erőszakolt jelet küldik fel állandóan a repülő GPS -re abból a célból, hogy ezt a jelet sugározza a GPS a földfelszíni felhasználókhoz, vagy

 

az 1. óra jelét küldik fel, és ahogy Te mondod helyesen, ott helyben erőszakolják meg naponta 38 mikroseccel, mert az eredmény mindkét esetben ugyanaz.

 

Ezt fontos lenne megértened, s a példám azért ilyen mert így (remélem) sokkal könnyebb megérteni mi is valójában a probléma.

 

Előzmény: Dubois (16455)
habár Creative Commons License 2006.02.05 0 0 16496
"Ez megint habárolás"
Nevem Teve

Persze, hogy habárolás...
Senki "valódi koordinátával" nem merné leírni, amiről itt végül is szó van.
Még "képzetessel" is, csak tréfálkozva...

Hogy a valós világnak vannak fiktív részei... És hogy valós eredményhez jussunk, sok esetben fiktiv dolgokkal kell, hogy számoljunk?
Ez ellentmond mindennek, amit a világról 6 Mrd embernek tanítanak a valóságról.
Persze azért a legtöbb sejt valamit...
Az biztos, hogy nem égetően sürgős. Lehet hogy felesleges is. Kis intermezzo.
A valóság széles sodrában. Afféle költői képzelgés. Immaginárius.
Erről jut eszembe, már rég át akartam nyergelni az irodalomba...Versek, aforizmák stb.
Ilyesmik:

Maradj a vízben, búvár,
A szárazon csak bú vár...

Úgyhogy illik elbúcsúznom.
Örülhettek:
habár
(a fékezhetetlen habozású).

Előzmény: NevemTeve (16494)
iszugyi Creative Commons License 2006.02.05 0 0 16495
Tacskó!
Előzmény: Gnudist (16493)
NevemTeve Creative Commons License 2006.02.05 0 0 16494
Ez megint habárolás... R3 halmaz vektorteret alkot R felett, a szokásos összeadással és skaláris szorzással:
(a,b,c)+(d,e,f)=(a+b,c+d,e+f)
λ*(a,b,c)=(λ*a,λ*b,λ*c)
Ebben a vektortérben legfeljebb három független vektort lehet találni, ezért dimenziója három. Pl:
(1,0,0), (1,1,0), (1,1,1) független vektorok, azaz ha találsz olyan a,b,c-t melyre:
a(1,0,0) + b(1,1,0) + c(1,1,1) = (0,0,0), akkor a=b=c=0.

Megjegyzés: mindezt nem cáfolja az, hogy R3 számossága ugyanannyi mint R-é.
Előzmény: habár (16492)
Gnudist Creative Commons License 2006.02.05 0 0 16493
> Ne folytasd a parasztvakítást!
Olyan édes, amikor iszugyi a saját hozzászólására kattintva mondja ezt;-)
Előzmény: iszugyi (16475)
habár Creative Commons License 2006.02.05 0 0 16492
Végül nem töröltettem ki a topikot, mert ott nem mutathattam semmi alkalmazását.

De rájöttem, hogy ahhoz nincs is jogom. Ezenkívűl, bármit próbáltam törültetni, eddig semmit nem törültek. Biztos így jó.

De itt az alkalmazásról beszélünk.
És éppen Te bizonyítasz.
Ugyan nem beszéltünk itt vektorokról, de Te gyönyörű három független, i,j,k jelölésű vektorral örvendeztetted meg a szívem.
Hát erről van szó. Az ai, bj; ck vektorok viszont nem x, y, z koordináták.

Az a, b, c (x,y,z) csak három szám, szemben az ( i*c*dt)-vel.
És ezt a zanzát nevezitek Ti négy dimenziónak.
Csak annyit kértem, írjátok ki a négy jelzést.
Ja, és hogy adjatok nekik egységgyök értékét.
És akkor meglátjátok, hogy a dolog nem egészen ugyanaz.
Mert akkor, lesz még néhány képzetes jelölésű változótok, amelyek valós számot kevés kivétellel általában csak KÉPZETES ÉRTÉK behelyettesítésével adnak!
És akkor lehetne látni valamit, amire esetleg rámondható, hogy a képzetes tartomány a HATÁROZATLAN! Vagy bármi mást.
De Ti nagy dölyfösen... a saját megértésetekre torzítjátok a matekot, a fizikát, és elégedettek vagytok magatokkal.
Méghogy fiktív, képzetes tartomány? Olyan nincs!
Pedig a baj ott kezdődik, hogy már a változóitok nem valósak.
Erről szólt a "Számoljunk egymással"

(Lássátok be, ilyesmiről én sem írhatok komolyan. Azt lehetne becsülnötök bennem, hogy tudok komolytalan lenni. És ezt nem tehetném meg képzetten.)
Előzmény: NevemTeve (16491)
NevemTeve Creative Commons License 2006.02.05 0 0 16491
"Gonodolod, hogy el lehet neki magyarázni a "lineáris tér" mibenlétét?"
Legutóbb itt próbálkoztunk: http://forum.index.hu/Article/jumpTree?a=45950418&t=9121079
A vektortér dimenziója az a szám, ahány független vektort lehet benn találni.

Előzmény: habár (16463)
iszugyi Creative Commons License 2006.02.05 0 0 16490
Nem kell Heisenbergre és Schrödingerre fogni a dolgot, milyen pontosan ismerjük például a bolygók helyét és idejét egy "idöpontban"? Itt rábukkanhatsz a makroszkópikus határozatlanságra.
Előzmény: habár (16487)
iszugyi Creative Commons License 2006.02.05 0 0 16489
Jó, jó de minden ostobaságra nem vetem rá magamat.
Előzmény: habár (16488)
habár Creative Commons License 2006.02.05 0 0 16488
Akkor tartsd magad is "akadémikusnak", és szebb lesz az életed.
Előzmény: iszugyi (16486)
habár Creative Commons License 2006.02.05 0 0 16487
Iszugyi
Keresem az okát a határozatlanságnak.
Heisenberg, Shrödinger persze leírták, de nem úgy, hogy az makroszkópikus méretre is vonatkoztatható legyen. Azért is van most "határozatlanság a határozatlanságban".
Mert ahhoz más megközelítés kellene.
Ilyen lehetne például, ha bizonyítható lenne, hogy a megoldáshoz szükséges egyenletek száma kevesebb, mint a változóké.
Mert akkor csak a változók összevonása segítene, ha lehetséges lenne, mert létezik közbülső függvény, valamilyen.
Ami végül is azonos lenne azzal, mintha az egyenletek száma nőne.

De ha nincs ilyen függvény, akkor az a két változó egymás között HATÁROZATLAN!

Ezt az egyszerű elvet próbáltam érvényesíteni a Lorentz trafóban, hogy makroszkópikus határozatlanságra bukkanjak.
Mondván, hogy több a változó, mint az egyenlet.
Itt tartottunk.
Előzmény: iszugyi (16482)
iszugyi Creative Commons License 2006.02.05 0 0 16486
Én úgy vagyok, hogy nagon jókat tudok az "akadémikus fizikusokon" nevetni.
Előzmény: habár (16484)
iszugyi Creative Commons License 2006.02.05 0 0 16485
Ha már olyan bizonytalanság van a sebesség mérésnél, mi értelme van két v sebességgel mozgó inerciarendszerek bevezetése, és honnan jön az 'inercia' fogalma egyáltalán?

Az egyenletesen egymáshoz képest gyorsuló inerciarendszerektöl ne is beszéljünk.
Előzmény: muallim (16483)
habár Creative Commons License 2006.02.05 0 0 16484
off..
Ne haragudjatok, de olyan jókat tudok magamon nevetni...Ti hogy vagytok ezzel...?
on
Előzmény: habár (16481)
muallim Creative Commons License 2006.02.05 0 0 16483
ne szomorkodj sok fiatal vénebb és sok vén fiatalabb egymásnál. ( érted?)
Előzmény: habár (16481)
iszugyi Creative Commons License 2006.02.05 0 0 16482
Rájöhetnél, hogy a sebesség egyenleténél

v = (x2-x1)/(t2-t1),

már probléma van, mert az x1,t1 és az x2,t2 pontokat sem tudod kellö biztonsággal egy makroszkópikus testnél megmérni. (Egy mikroszkópikus részecskénél meg elvi lehetetlenség.)
Előzmény: iszugyi (16479)
habár Creative Commons License 2006.02.05 0 0 16481
Köszönöm Muallim.
Illetlenség mit teszek, és szép, hogy Ti szóba álltok velem.
Én meg ezt azzal hálálom meg, hogy komiszkodok.
Mert őszintén- ha mindenki jól nevelt, akkor ezzel úgy hiszem, valamiféle hiányt pótlok, persze, csak amíg bírom.
Mert komisznak lenni se könnyű, és ahogy öregszem, és gyengülnek a kezeim, hát...
Előzmény: muallim (16478)
habár Creative Commons License 2006.02.05 0 0 16480
"Habár, és milyen pontosan tudod megadni az
x-et, a t-t és a v-t
az egyenleteidben egy makroszkópikus testre vonatkozóan?"

Hát kellene rajta keressek egy fixen pontos pontot. Csak találok majd, vagy nem?
Mondjuk, egy részecskét, akármilyen pirinyót.
Hogy is mondta valaki.
"Csak találjak egy fixpontot, azonnal..."
De nem talált szerencsére, így akkor még megusztuk...
Előzmény: iszugyi (16474)
iszugyi Creative Commons License 2006.02.05 0 0 16479
Mond meg milyen pontosan tudod egy test helyét, sebességét és a hozzá tartozó idöt megmérni, Ha ezeket megállapítottad, azután folytasd az egész vitát a SRE-röl.
Előzmény: iszugyi (16475)
muallim Creative Commons License 2006.02.05 0 0 16478
én a logikádban csak a P(x,t)-ből levezetett P(v=x/t)-t tartom tévesnek, az indexek meg figyelmetlenségből ugrálnak.
Előzmény: habár (16477)
habár Creative Commons License 2006.02.05 0 0 16477
Abban a formában, ahogyan most igényled, már korábban levezettem.
De ha Te nem téveszted el az indxet, miért nem írod le Te.?
Ha meg nem írsz képletet, hogyan vitatkozhatsz?
Egy hibás képlet is több információt ad, mint akárhány kijelentés.
Előzmény: muallim (16476)
muallim Creative Commons License 2006.02.05 0 0 16476

Ne haragudj, amíg az indexeket eltéveszted nem érdemes képletekkel jönni, most is azt mondom mint az elébb, hogyha egy esemény vagy téridőpont koordinátája P(x,t), akkor a P pont sebessége nem x/t, hanem dx/dt. Te meg következetesen ezt hajtogatod :dehát v= x/t vagyis a szorzat nulla értékű.

Ezért téves következtetésekre jutsz és azt fűzöd tovább.

Előzmény: habár (16469)
iszugyi Creative Commons License 2006.02.05 0 0 16475
Ne folytasd a parasztvakítást!
Előzmény: iszugyi (16474)
iszugyi Creative Commons License 2006.02.05 0 0 16474
Habár, és milyen pontosan tudod megadni az

x-et, a t-t és a v-t

az egyenleteidben egy makroszkópikus testre vonatkozóan?
Előzmény: habár (16469)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!