Keresés

Részletes keresés

egy mutáns Creative Commons License 2007.06.15 0 0 1214

Furcsa nekem ez a vita, amikor én a diplomamunkámat írtam, még nem is volt PC. Mégis összejött valahogyan. De hogy hogyan, arra már nem emlékszem :)

1m

Előzmény: Dulifuli (1212)
Törölt nick Creative Commons License 2007.06.15 0 0 1213

"Ahhoz meg rohadtul nem volt kedvem, hogy mással írassam meg (azt, aminek fogalmam sem volt, hogy pontosan mit is kéne tartalmazni"

 

Hat a konzulenst erre talaltak ki :). Arra valo, hogy eligazitson a tartalmi es formai kovetelmenyeket illetoen. Amikor megkapod vagy kivalasztod a temad, akkor kapsz-valasztassz egy konzulesnt is.

Előzmény: Dulifuli (1212)
Dulifuli Creative Commons License 2007.06.15 0 0 1212
Valóban nem ismertem a követelményeket, és azóta sem ismerem, de már akkor is láttam normális kiadványt, és én végzősként nem voltam képes olyat készíteni, főleg azért, mert nem állt rendelkezésre olyan gép és program, amivel azt meg lehetett volna csinálni. Ha elolvasnád, amit írtam, akkor azt is láthatnád, hogy próbálkoztam a DOS-os Word-del, de vacaknak találtam, és feladtam a próbálkozást. Ahhoz meg rohadtul nem volt kedvem, hogy mással írassam meg (azt, aminek fogalmam sem volt, hogy pontosan mit is kéne tartalmazni, bár lett volna lehetőségem arra, hogy másokét átnézzem), mint ahogy ahhoz sem, hogy úgy adjam be, hogy a maximum formázás annyi, hogy nagybetűvel kezdődnek a mondatok, illetve ezen kívül legfeljebb egy indent vagy word wrap funkciót tudok használni. Arról nem is beszélve, hogy normális nyomtatót nem is láttam az öt év alatt. Amikor - 2 évvel később - megláttam az első lézernyomtatót, azt hittem, hogy az fénymásoló. Te talán szívesen adnál be egy dolgozatot egy DOS + mátrixnyomtatós hardcopy minőségben? Mert ha nem, akkor talán inkább zárjuk le ezt a témát!
Előzmény: treff2 (1211)
treff2 Creative Commons License 2007.06.15 0 0 1211
Hmmm... Csak azt ellentmondásokra vadászok. Egyrészt, nem tudod, mik a formai követelmények (1191-ben), másrészt állítasz dolgokat szövegszerkesztő/tördelő/ stb programok alkalmatlanságáról (legutóbb 1202-ben). Elég konkrét példa, nem?

És a saját korlátaid miatt baszogacc engem.
Igen, valóban korlátolt vagyok.
Előzmény: Dulifuli (1202)
Gergo73 Creative Commons License 2007.06.15 0 0 1210

Akinek túl határozott elképzelése van arról, hogy a valóság milyen, az vallásos. A világnézeteddel az a bajom, hogy figyelmen kívül hagyja az elmúlt 100 év fizikáját. Azokat a pontosabb megfigyeléseket, amikről itt beszélünk a pi kapcsán. Pl. hogy kicsi mérettartományban egészen más a fizika, mint megszoktuk. Értelmét vesztik az olyan tiszta fogalmak, mint sebesség, impulzus stb. és helyébe más, absztraktabb matematikai fogalmak válnak értelmessé, használhatóvá, működőképessé. Az euklideszi geometriában 10100-os nagyítás után is ugyanolyan a világ, mint eredetileg. A valóság meg nem ilyen. És nem csak azért, mert kis alkotóelemekből vagyunk összerakva, amiket nehezen hasítunk még kisebb alkotóelemekké. Hanem azért, mert azok a kis alkotóelemek nem úgy viselkednek, mint a felnagyított társaik. Egy elektron az nem egy kis golyóbis, hanem hullám is, meg energiakvantum, meg ki tudja még mi. Nincs pontos határa az elektronnak. De nem is olyan hullám, mint a nagy hullámok, mert kicsit úgy is viselkedik, mint egy golyóbis. Egyszerűen nem tudod megragadni a kvantumjelenségeket a hétköznapi fogalmakkal. Sokan próbálták, de a valóság mintha nem engedelmeskedne az olyan "apriori" elképzeléseknek, mint amilyen a tied is. Az ált.rel-be meg bele se kezdek, hiábavalóság lenne.

 

Előzmény: Dulifuli (1204)
Gergo73 Creative Commons License 2007.06.15 0 0 1209

Nem állok meg 10100-nál. Ahhoz, hogy kijelenthesd, a valóságos körkerület/körátmérő arány pontosan pi, ahhoz tetszőleges pontosságú mérőeszközre lenne szükséged. Már a "pontos fizikai kör" meg "körkerület" fogalmához is szükséged lenne ilyenre, tehát egyáltalán ahhoz, hogy beszélhess arról, megmutathasd a többieknek, mit is akarsz megmérni. És csak utána jönne a mérés maga. Itt sietve megjegyzem, hogy a pi tetszőleges pontosságú kiszámítására van algoritmus (már az ókorban is ismertek ilyet), több milliárd jegyet kiszámoltak már, és ennek semmi köze az aktuális mérőműszerekhez. Persze attól hogy végtelenül pontos mérőműszerünk egyelőre nincsen, még hihetnénk abban, hogy az euklideszi geometria telitalálat volt, az a valóság pontos leírása és csak idő kérdése hogy mikor lesz egyre pontosabb műszerünk, amivel erről egyre pontosabban meggyőződjünk. De ez csak hit lenne, olyasmi, mint az angyalokban vagy az újjászületésben való hit: racionálisan ingatag lábakon állna. Hiszen 20 tizedesjegy semmi 100 vagy egymillió tizedesjegyhez képest. Én személy szerint nem tudnék ebben hinni, mert kismillió más geometria van, ami mind nagyon-nagyon hasonlít az euklideszire (pl. az általunk elérhető mérettartományban és pontossággal nem különböztethető meg tőle), mégsem az. Furcsa lenne, hogy a valóság pont az euklideszit szemelte volna ki magának: olyasmi lenne, mintha valaki a végtelenségig dobálna egy dobókockát és mindig 6-os jönne ki neki. Nem lehetetlen, de meglehetősen furcsa esemény lenne ez. Ennél azonban nyomósabb érv, hogy a XX. századi tapasztalatok egész sora arra enged következtetni, hogy a valóságos geometria nem euklideszi (többféle módon nem az). Mivel ezeknek a tapasztalatoknak az értelmezése és feldolgozása a SR-t meghaladó matematikai apparátust és absztrakciót használ (pl. kvantumfizikát vagy általános relativitáselméletet, és nem azért mert a fizikusok szeretik bonyolítani a dolgokat), ezért meg sem kísérelem elmagyarázni. Hiszen az SR-t sokkal jobban értem, mint az idézett teóriákat (és jóval egyszerűbb azoknál), de azt se sikerült neked elmagyaráznom 5 vagy még több év alatt.

 

Előzmény: Dulifuli (1203)
gligeti Creative Commons License 2007.06.15 0 0 1208

 üdvözöllek, kullancstársam!

Előzmény: Törölt nick (1199)
gligeti Creative Commons License 2007.06.15 0 0 1207

A konzisztenciát vitatja, pontosabban azt, hogy értelmes lenne a SR. Szerinte olyan nincs, hogy A szerint B öregszik lassabban, B szerint pedig A.

 

 A második a helyes állítás (értelmes lenne az SR). Azt nem vitatja, hogy elméleti, földtől elrugaszkodott modellben lehet ilyen akármiket csinálni, amik relatívak -- A szerint B a rövidebb, de B szerint meg A, és ez nem valami látszólagos dolog, csak azt mondja, hogy ez csak a modellen belül lehet ilyen, ez azonban nem lehet a "valóság" olyanvalaki számára, aki a "realitásérzékét" még nem vesztette el. Mivel a fent/lent relativitását elfogadja, nem általában tagadja, hogy ilyen fizikai mennyiségeknél lehetséges volna, hanem csak a távolságnál és az időnél marhaság, mert az más, az "nem lehet olyan" a "valóságban".

 

 Szerintem fontos, hogy pontosan értsük, és ez nem egyszerű, mert más igazságfogalmakkal dolgozunk. Az egész valójában igazságelméleti probléma.

 

Előzmény: Gergo73 (1197)
Dulifuli Creative Commons License 2007.06.15 0 0 1206
Esetleg néha el is olvashatnád, amiket írok, mielőtt tovább sértegetnél. Vagy jobb lenne, ha most én is elkezdenélek Téged sértegetni?
Előzmény: Törölt nick (1199)
Dulifuli Creative Commons License 2007.06.15 0 0 1205
Ti már sokszor írtatok sok mindent, de még a saját klikketeken belül sem tudtok egyetérteni, pedig állítólag értitek a specrelt.
Előzmény: Gergo73 (1198)
Dulifuli Creative Commons License 2007.06.15 0 0 1204
Nem értem, hogy mi a bajod a világnézetemmel. Nekem legalább határozott elképzelésem van. Bigott vallásosnak meg eddig még senki nem nevezett. :-)
Előzmény: Gergo73 (1197)
Dulifuli Creative Commons License 2007.06.15 0 0 1203
Akkor most már csak azt mondd meg, hogy miért állsz meg 10 a századikonnál? Miért nem akarsz még ennél is nagyobb pontosságot?

Ma úgy tudjuk, hogy az euklideszi geometria több helyen sérül a valóságban...

Ezt kifejtenéd egy kicsit bővebben? Nagyon érdekelne!
Előzmény: Gergo73 (1194)
Dulifuli Creative Commons License 2007.06.15 0 0 1202
Akkor én is összefoglalom: Te nem vagy képes megérteni, hogy egy sima mezei szövegszerkesztővel (nem kiadványszerkesztőt írtam, és ez nem véletlen) nem lehet elfogadható formájú szakdolgozatot készíteni. És a saját korlátaid miatt baszogacc engem.
Előzmény: treff2 (1193)
Dulifuli Creative Commons License 2007.06.15 0 0 1201
Oké, addig is, amíg hozzájutok, hogy válaszoljak, nekem is lenne egy kérdésem: meg tudnátok mondani azt, hogy mi az a sebesség?
Előzmény: zgyorfi (1192)
egy mutáns Creative Commons License 2007.06.15 0 0 1200

megértettem a különbséget a valódi szakasz és a fejemben élő absztrakt geometriai szakasz között.

Erről mintha már lett is volna szó, ha jól emlékszem, éppen SR billentyűzetéről.

Van a "platóni" matematika, ennek része az euklideszi geometria (jól megférve a többivel), és van a valóság, amit a platoni modellez, persze a fogalmak összedefiniálásával.

Érdekességképpen: A.E. kis könyvecskéjének elején is szó van erről, pont ilyen értelemben, rámutatva a matematikai és fizikai geometria közötti különbségtétel fontosságára.

1m

Előzmény: Gergo73 (1194)
Törölt nick Creative Commons License 2007.06.15 0 0 1199

"Ő egy vulgárcáfoló, aki nem értette meg minimálisan sem a SR-t "

 

Tegyuk hozza, hogy nem veletlenul nem ertette meg. Szamomra teljesen furcsa modon keptelen effele absztrakciokra, itt nem csak arrol van szo, hogy nem akarja megerteni. Ez egy fajta vaksag, fejlodesi rendellenesseg.

 

Az viszont egy erdekes kerdes, hogy vajon mi mifele vaksaggal kuzdunk? Hol huzodnak az absztrahalo kepessegeink hatarai? Mekkora vilagot nem latunk ezaltal?

Előzmény: Gergo73 (1197)
Gergo73 Creative Commons License 2007.06.15 0 0 1198
mert én nem a modell konzisztenciáját vitatom

Ehhez képest többször megírtad a fórumon, hogy a SR-ben logikai ellentmondás van (pl. mert szimmetrikus idődilatáció nem létezhet a valóságban). Mi meg azt írtuk meg többször, hogy a SR nem a valóságot írja le, mint ahogy semmi sem a valóságot írja le. Vannak modellek, amik a saját nyelvükre a maguk módján leképezik a valóságot. Egyes célokra egyes modellek hasznosabbak, mint mások.
Előzmény: Dulifuli (1188)
Gergo73 Creative Commons License 2007.06.15 0 0 1197
A konzisztenciát vitatja, pontosabban azt, hogy értelmes lenne a SR. Szerinte olyan nincs, hogy A szerint B öregszik lassabban, B szerint pedig A. Annak ellenére, hogy olyan van, hogy A szerint B van feljebb, B szerint pedig A. Ő egy vulgárcáfoló, aki nem értette meg minimálisan sem a SR-t (pl. a fenti kijelentések pontos jelentését, tartalmát, formalizált változatát). Az egyéb hozzászólásai egyébként arról tanúskodnak, hogy ő bigott vallásos (pl. a valóságos tér az maga az R3 in its full glory), annak ellenére, hogy ateistának tartja magát.
Előzmény: gligeti (1190)
Gergo73 Creative Commons License 2007.06.14 0 0 1196
Ez a link még jobb.
Előzmény: Gergo73 (1195)
Gergo73 Creative Commons License 2007.06.14 0 0 1195
Bocs, ezt a linket akartam.
Előzmény: Gergo73 (1194)
Gergo73 Creative Commons License 2007.06.14 0 0 1194

Nem látom be, hogy miért ne lenne az.

Azt kell belátni, hogy az, nem azt hogy nem az. De előtte persze definiálnod kell a "tökéletes kör" fogalmát a valóságban, amihez persze definiálnod kell a "pontosan r távolságra" fogalmát a valóságban. Magyarán fel kell mutatnod egy vonalzót, amivel a méter 10100-ad részét meg tudod mérni, mert különben nincs értelme a fenti "pontos kör" és "pontos távolság" fogalmaknak. A pi ellenben egy definiált matematikai (nem fizikai) mennyiség, az ezredik tizedesjegye adva van: ha valaki kiszámolja Európában és Ausztráliában, ugyanazt a számot kapja, pedig nem beszéltek össze. Lásd itt.

 

És ez nem attól függ, hogy hány tizedesjegy pontossággal tudjuk megmérni.

 

Dehogynem, pont attól függ. És persze attól, hogy a valóságnak az euklideszi geometria pontos modellje-e vagy sem, értelmesek-e a "kör" és "távolság" fogalmak a valóságban úgy, mint a geometriában. Ma úgy tudjuk, hogy az euklideszi geometria több helyen sérül a valóságban. Nem igaz a párhuzamosok axiómája, illetve nem lehet egy szakaszt a végtelenségig felezni. Egyébként én talán 8 évesen gyötrődtem ezen először és utoljára: akkor megértettem a különbséget a valódi szakasz és a fejemben élő absztrakt geometriai szakasz között. Ideje lenne, hogy te is megértsd ezt a különbséget, sosem késő.

 

Előzmény: Dulifuli (1189)
treff2 Creative Commons License 2007.06.14 0 0 1193
Összefoglalom, hol tartunk. Ismertél és használtál szövegszerkesztôket, de azok alkalmatlanok szakdolgozatkészítésre. Hogy miért, azt nem tudod megmondani. Nem érzel ellentmondás-szagot? Pont ugyanez van a relativitással is, amit nem ismersz mélyen, mindazonáltal elutasítod mint hülyeséget.

Te viszont egyértelműen csak engem kezdtél el baszogatni. De csak szólj, ha tévedek!
Részben tévedsz. Az érvelésed nevetségességét akartam bemutatni (a jelek szerint nem fogtad az adást). Finomkodóbb véleményeken talán átsiklanál. Nézd, nem szorulsz senkinek magyarázattal diploma-ügyben, fôleg nekem nem. Ha viszont mondasz valamit, az álljon meg a lábán. Az adott esetben matematika ill. fizika területén is, de mindegy.
Előzmény: Dulifuli (1191)
zgyorfi Creative Commons License 2007.06.14 0 0 1192

Ma még csak először szólok...

Előzmény: Dulifuli (1191)
Dulifuli Creative Commons License 2007.06.14 0 0 1191
ad 1. Fogalmam sincs, hogy mi az, ami nélkülözhetetlen, mert azóta sem mondta el nekem senki, hogy egy ilyen dolgozattal szemben mik a követelmények. Mindazonáltal láttam már olyan anyagokat, amelyek rendesen el voltak készítve, és úgy gondoltam, hogy ha végzős informatikusként csak egy mátrixnyomtatóval kinyomtatott programlista minőséget vagyok képes produkálni, az elég rossz fényt vet rám is, meg az intézményre is.

ad 2. Úgy látom, még mindig nem érted: alapvetően nem az volt a bajom, hogy nem tudtam megtanulni egy rendes program kezelését, hanem az, hogy még csak nem is találkoztam ilyen rendes programmal.

4. Szerintem ennél jóval többről szól, Te viszont egyértelműen csak engem kezdtél el baszogatni. De csak szólj, ha tévedek!
Előzmény: treff2 (1187)
gligeti Creative Commons License 2007.06.14 0 0 1190

 

 Amikor Dulifuli azt mondja, hogy "az nem lehet", akkor nem a konzisztenciát vitatja, sem azt, hogy a mérések eredményei ezzel egybevágnak, hanem azt, hogy valójában úgy nem lehet az idő és a távolság (tehát szerinte létezik embertől függetlenül valahogy az "igazi" idő és a távolság, ami "nem lehet" relatív, csak mi azt az igazit torzítva mérjük). Mert hogy a távolság szerinte nem lehet olyan, hogy innen nézve más mint onnan. Annyira bele van égetve az az idő- és távolságfogalom, amit ért, hogy meggyőződése, hogy az a világ inherens része, nem egy emberi fogalom a világ valamilyen tulajdonságának a megértésére.

 

 Ezért tolom a programos példát, mert az jó analógia arra, hogy a világnak belülről csak a viselkedését ismerhetjük meg, és ha több izomorf implementáció is van, ami ezt a viselkedést produkálja, akkor értelmetlen arról beszélni, hogy melyik az "igazi". Belülről bármely implementációval modellezhetjük, és egyik se igazibb a másiknál, csak a hasznossága és egyszerűsége (Occam) értelmezhető.

Előzmény: Gergo73 (1185)
Dulifuli Creative Commons License 2007.06.14 0 0 1189
A pi az nem a kör alakú dolgok kerülete (az átmérőhöz viszonyítva). Gondold csak meg, a valóságban nem tudsz egy ilyen hányadost száz tizedesjegy pontosságra megmérni

Nem látom be, hogy miért ne lenne az. Az persze már más kérdés, hogy egy valóságos dolog lehet-e tökéletesen kör alakú, de ha lehetne, akkor éppen ezt adná meg a pi. És ez nem attól függ, hogy hány tizedesjegy pontossággal tudjuk megmérni.
Előzmény: Gergo73 (1186)
Dulifuli Creative Commons License 2007.06.14 0 0 1188
te magát a konzisztenciát vitatod ("az nem lehet hogy..."). Minkowski konkrét modelljének fényében ez olyasmi, mint amikor a bácsi először lát zsiráfot az állatkertben és így szól: ilyen állat pedig nincs...

Nem egészen, mert én nem a modell konzisztenciáját vitatom, hanem azt, hogy az a fizikai valóságot írja le. És ezt már többször is megírtam itt a fórumban. Amikor én ilyeneket írok, mint amit most idéztél, akkor a valóságról beszélek, és nem egy attól elvonatkoztatott modellről.
Előzmény: Gergo73 (1185)
treff2 Creative Commons License 2007.06.14 0 0 1187
Alapfunkciók bőven elegendőek, mi? Na, én megnézném azt a szakdolgozatot, amit Te megírnál azzal a szövegszerkesztővel, amit mi használtunk!
Mondanál egy példát tipográfiai feladatra, ami _nélkülözhetetlen_ egy szakdogához, de nem működött az általad használt szövegszerkesztőben?

Hja, kérem, '98-ban! Mi viszont '92-ben még nem is hallottunk a Linuxról.
Figyusz, összefoglalva, csak a kedvedért. Mindegy, hogy melyik évben, egy nem-infós leány se perc alatt megtanulta egy (elsőre) nem éppen intuitív szövegszerkesztő rendszer használatát egy (elsőre, sőt másodikra is) barátságtalan felhasználói felületen. Ennyi.

4. Ezek után mi is a problémád velem?
Veled semmi. Ez a topik nem rólad szól, hanem a dulifulizmusról. Szólj, ha tévedek.
Előzmény: Dulifuli (1182)
Gergo73 Creative Commons License 2007.06.13 0 0 1186
A pi-vel nincs különösebb bajom, hiszen kör (vagy gömb) alakú dolgok nyilván léteztek már jóval az ember megjelenése előtt is, és már akkor is ugyanaz volt a viszony a kör kerülete és átmérője között, mint manapság.

A pi az nem a kör alakú dolgok kerülete (az átmérőhöz viszonyítva). Gondold csak meg, a valóságban nem tudsz egy ilyen hányadost száz tizedesjegy pontosságra megmérni (sőt a kvantumfizika értelmében ilyen mérés nincs is), míg a pi-t könnyen megkaphatod ilyen pontossággal. A pi az egy matematikai fogalom (sokféleképpen definiálható, pl. mint az euklideszi sík egységkörébe írható konvex sokszögek félkerületeinek legkisebb felső korlátja), ami egy bizonyos pontosságig jól használható a gyakorlatban (pl. kör alakú dolgok kerületének megbecsülüsére az átmérőjük ismeretében).
Előzmény: Dulifuli (1175)
Gergo73 Creative Commons License 2007.06.13 0 0 1185

A Süsü az nem egy formalizált modell, ahol pontosan követhető lenne a logika és ahol kérdéseket lehetne feltenni és rájuk válaszokat kapni. A Süsüben nem kérdezheted meg, hogy hány sárkány él a földön és nem számolhatod azt ki százféleképpen. A Süsü ellentmondásmentessége az nem egy ellenőrizhető kritérium, hanem legfeljebb a nézők szubjektív véleménye a látottak alapján: tehát annak alapján, amennyit az alkotói mutatni akarnak. Egy matematikai modell - mint pl. a SR - egészen más tészta. Ott adva vannak az alapszabályok és aztán a végtelenségig keresgélheted a logikai következményeit. Ha nincs két ellentétes következménye az alapszabályoknak, akkor az alapszabályok egy alkalmas halmazelméleti modellben egyszerre igazak (ez Gödel ún. teljességi tétele, pontosabban annak egy ekvivalens változata). Az SR-re konkrétan Minkowski meg is adott ilyen halmazelméleti modellt: (x,y,z,t) valós számnégyesek halmaza az x2+y2+z2-t2 normával. A lényeg az, hogy a világunk akár azonos is lehetne egy ilyen modellel. Az ilyen lehetőségek feltárása és megvizsgálása a természettudomány feladata.

 

Veled az a probléma - és erről szól ez a topik is - hogy te magát a konzisztenciát vitatod ("az nem lehet hogy..."). Minkowski konkrét modelljének fényében ez olyasmi, mint amikor a bácsi először lát zsiráfot az állatkertben és így szól: ilyen állat pedig nincs...

 

Előzmény: Dulifuli (1184)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!