A világűr nem üres kutatási adatok szerint 1 köbcm, világűr átlag öt részecskét tartalmaz, ezt 1köbmm-es cső formájú tér gyanánt vizsgálva 1m. hosszú térrészben öt részecskét találunk. Vizsgáljunk most részecske átmérőjű világűr teret fényévnyi hosszban, tegyük fel, ha ebbe egy részecske esik, (most nem akarok nagy számokkal bíbelődni) akkor 12 milliárd fényévnyi hosszú térrészbe a valószínűség szabályai szerint 12 részecskét találunk. Ennyi részecskén küzdi át magát az a foton amelyik ilyen messziről érkezik hozzánk. A felkelő és a lenyugvó napból szemünkbe érkező fény valószínűleg ugyan ennyi részecskén verekedte át magát, mivel a sűrű légrétegen ferdén jutott el hozzánk.
"Hawking tudtommal lazán "elsikálta" a kezdőpontot."
Ha ez a sikálás sikerült volna, annak nagyon örülnének a fizikusok, mert a szingularitások kellemetlen tüskék, mint ahogy az a kérdés is, hogy "mi volt az Unverzum kezdete előtt"? De Hawking határok nélküli kezdete nem egy kidolgozott modell, hanem csak a lábujjánál lyukas téridő zokni mesterséges kifoltozása, bármi dinamikai indoklás nélkül.
Matematikailag persze megtehetjük, hogy meghatározott határok mentén összevarrunk két különböző téridőt, de hogy ebből komolyan vehető fizikai elmélet legyen, ahhoz ezt dinamikailag indokolni kellene. Ez esetben valami magyarázat kellene arra, ahogy Hawking az infláció de Sitter téridejét (ami egy hiperbolikus téridő egyik fele) összevarrja egy négydimenziós szferikus tér egyik felével. Mondjuk olyasmi, hogy meghatározott görbületek felett ezért és ezért megváltozik a téridő szignatúrája. Ha lenne ilyen indoklás, akkor lehetne azt értelmezni, lehetne vele számolni, esetleg valami mérhető következményei után kutatni. Ilyen vizsgálatok során esetleg kiderülhetne, hogy miért pont ott és miért épp olyan téridőket kell összevarrni. Érteni lehetne, hogy miféle okok hatására kezd Hawking kezdeti négyestérszerű térideje (amiben az időkoordináta is térszerű, mert képzetes számmal mérjük) átalakulni az ismert téridőszerű téridővé (amiben már az időt is valós számmal mérjük).
Erre túl gyenge oknak látszik pusztán az, hogy ezúton eltüntethető a kezdeti szingularitás.
Pedig construct leírta: minden irányban a "kezdőpont" látszana. (Eltekintve attól, hogy vizuális majmokként számunkra a látvány a legfontosabb, viszont a látványt hordozó fotonok keletkezésének vannak feltételei, amiket általában figyelmen kívül hagy a laikus okoskodó.)
Látom, még az ajánlott szöveg segítségével se sikerült megértened, hogy bármerre nézünk is, a legtávolabbról érkező fénysugarak mindenfelől csak ugyanazt a korai eseményt mutathatják, nevezetesen a kezdet utáni 380 ezredik évben keletkező CMB-t. Teljesen mindegy, hogy például a Sarkcsillag félé nézel, vagy a Dél-keresztje felé. Az 380 ezredik év elé csak azért nem látunk, mert ott még nem tudtak szabadon terjedni a fénysugarak, de ha tudtak volna, akkor mi most nem a CMB-t látnánk minden irányban, hanem, a kezdőpontot. Egy táguló homogén és izotrop térben ez pusztán geometriai okokból nem is lehetséges másként.
Csak azt próbáljátok átgondolni, hogy nagy bumm-ban egy ponton jelen vagytok, kezdtek tágulni, végül egy pontként elfoglaltok egy pozíciót, a kezdeti jelenség folyamatosan új jelenségnek, más ábrázatúnak mutatkozik, szétrepült minden.
Hogy a frászban jöhetne manapság olyan konfiguráció a mostani tartózkodási helyedre, amelyik a keletkezés korai időszakának, vagy azt követő bármely időszak ábráit most tükrözhetné, legfeljebb az elmúlt idő feléig, illetve felétől láthatunk a múltba ???
A gömb szerű horizont nem ábrázolhat korai konfigurációt, ez egy lehetetlen jelenség volna. A kb. 13-14 milliárd évvel korábbi, meg az utána következő 6-7 milliárd éves konfigurációk már régen elhagyták a mi pozíciónkat. Józan megfontolás szerint.
Ezen a "pályán" hozzánk eljutó fény elszenvedhetne e szóródásos, reflexiós vagy a térségen bizonyosa többhelyen felbukkanó gravitációs térerő változás miatti hullámhossz növekedést?
"A sokkal hígabb térség legkisebb számításba vehető anyag átmérőjének megfelelő keresztmetszetű, belátható horizont határig terjedő, /szálszerű/ tér-vonalban hány anyag, vagy anyag törmelék jelenlétének van valószínűsége?"
Vigyázz, amit látsz, az egy kúp alakú térrész vetülete a szemben/CCD lemezen. Ha ez a kúp teljeskúp (4π szteradián), akkor mintegy 1080 db részecskével számolhatsz.
Ha onnan idefelé vesszük számításba az adott "tér-szálat" - amelyben majd a hozzánk érkező fény pályája lesz - ugyan úgy egy kúp-formát kell figyelembe vennünk. Nem túl sok ez a tíz a nyolcvanadikon darabszám?
"A sokkal hígabb térség legkisebb számításba vehető anyag átmérőjének megfelelő keresztmetszetű, belátható horizont határig terjedő, /szálszerű/ tér-vonalban hány anyag, vagy anyag törmelék jelenlétének van valószínűsége?"
Vigyázz, amit látsz, az egy kúp alakú térrész vetülete a szemben/CCD lemezen. Ha ez a kúp teljeskúp (4π szteradián), akkor mintegy 1080 db részecskével számolhatsz.
Örülök, hogy már nem a vagdalkozás a legfontosabb a bejegyzésekben.
Tehát a világűr sokkal hígabb térség, mint amit én téves információim alapján felvetettem.
A sokkal hígabb térség legkisebb számításba vehető anyag átmérőjének megfelelő keresztmetszetű, belátható horizont határig terjedő, /szálszerű/ tér-vonalban hány anyag, vagy anyag törmelék jelenlétének van valószínűsége?
Ezen a "pályán" hozzánk eljutó fény elszenvedhetne e szóródásos, reflexiós vagy a térségen bizonyosa többhelyen felbukkanó gravitációs térerő változás miatti hullámhossz növekedést?
A színképvonalak elmozdulására egyenlőre nincsen más magyarázat mint a fényforrás, vagy a megfigyelő távolodása, de ez még lehet egy olyan nyitott kérdés amelyre egyszer talán egyéb magyarázatot is találunk?
Igazad lehet, egy köbcenti világűrbeli térben lévő -átlag - 5 részecske létezésére vonatkozó információt egy olyan könyvből merítettem amelyikben csak utaltak űrkutatási adatokra, de hogy melyik kutatócsoport hozta ezt nyilvánosságra azt a forrást nem jelölték meg.
"A csillagközi (intersztelláris) térben gázt és port találunk. A megfigyelések szerint minden köbcentiméternyi kicsiny térségben átlagosan 1 gázatom lézeng. Egy 100 méter élhosszúságú kockában pedig átlagosan két –mikroszkopikus –porszem található. Lefordítva: a gáz átlagos sűrűsége 1,2 .10-24g/cm3, a poré pedig 1,3 .10-26g/cm3. A Tejútrendszer –melynek tagjai vagyunk –tömegének mindössze 2 %-át teszi ki a csillag-közi anyag, de döntő szerepet játszanak vagy játszhatnak a csillagok kialakulásában és az élet létrejöttében."
a Tejútrendszerben található gáz és por átlagos sűrűségről van szó. De az Univerzum galaxisokon kívül eső részei ettől sokkal ritkábbak, aztán még ettől is ritkábbak a galaxishalmazokon kívül eső tartományok. Végül a legritkábbak azok a részek, amelyek a halmazokból álló tömörülési szálak között helyezkednek el. Az általam adott sűrűség mindezek átlaga.
" feltételezzük egy taszító jellegű összetevő, a sötét energia jelenlétét is."
Ma éjjel néztem meg egy videót, melyben Csabai István fizikusunk a vége felé röviden említette, hogy a VE-t homogénnek feltételező matematikai modell nem biztos, hogy jó.
Fejlett számítógéppel - gondosabb szimulációval - e következtetésre jutottak:
Lehet, hogy a sötét energiáról szóló hipotézis hibás!
Biztosan egy eleve félreértett adat eltorzult nyoma.
Az Univerzum átlagos sűrűségéről (ami mindenféle kompakt égitestek, gáz és porfelhők meg a közöttük lévő üres tartományok átlagsűrűsége) elméleti alapon van tudomásunk, mégpedig abból, hogy a tapasztalat szerint az ősrobbanás után nem zuhant vissza, de nem is spriccelt szét egyre gyorsuló ütemben, hanem megmaradt egy állandóan táguló, de egyre lassabban táguló növekedési pályán. (A legújabb mérések szerint ez persze némileg korrigálandó, mert pár milliárd éve megindult egy enyhe gyorsulás, ami arra kényszerített minket, hogy a gravitációsan vonzó anyagok jelenléte mellett feltételezzük egy taszító jellegű összetevő, a sötét energia jelenlétét is.) A Univerzum tehát egy nagyon speciális tágulási pályát mutat, egy anyagfelhő csak akkor tud rajta maradni, ha a sűrűsége egy bizonyos kritikus sűrűség szerint változik az idővel. Az Univerzum mai korára a kritikus sűrűség 10-29 g/cm3 , ami kb. 10 Hidrogénatomot tesz ki köbméterenként.
Tehát itt egyáltalán nem a világűr sűrűségéről, hanem az Univerzum égitestekkel együtt vett átlagsűrűségéről van szó. De még ez is sokkal kisebb mint ami a topiknyitóban szerepel, hisz így is csak 10-5 Hidrogénatomnyi jut egy köbcentiméterre. Vagy ha elektronokban számolunk, akkor kb.
Te egész szakmák komolyságát veszed semmibe. Mintha a fizika meg a kozmológia olyasmi lenne, ahol szaktudás nélkül volna lehetséges cáfolni, reformálni, elméleteket építeni. És nem először teszed, hanem konokul ismételgetve.