Keresés

Részletes keresés

6Boci Creative Commons License 2016.02.05 0 0 1127

Egy ideje érdekel a kvantumfizika, megnéztem róla pár előadást. Itt egy jó videó a "kvantumradír" kísérlet bemutatásáról:

sarahcarrigen Creative Commons License 2015.06.02 0 0 1126

Szerezz doktorit akkor igazad lesz.

Előzmény: Bign (1110)
mma Creative Commons License 2015.05.27 0 0 1125

Ezek szerint képes vagyok rá :) Kösz!

Előzmény: mmormota (1120)
Mungo Creative Commons License 2015.05.27 0 0 1124

Most kiderült, hogy nem tudok számolni.:o(

Persze, hogy öt.

Előzmény: mmormota (1123)
mmormota Creative Commons License 2015.05.27 0 0 1123

Tíz?! 

Előzmény: Mungo (1121)
Mungo Creative Commons License 2015.05.27 0 0 1122

Na. Lassú voltam.  :o)

Előzmény: mmormota (1120)
Mungo Creative Commons License 2015.05.27 0 0 1121

:o)

Az a trükk, hogy olyan nincs, hogy pont három táblát talált el. Ha hármat eltalált, a negyediket már csak jó helyre tudja tenni. Tehát pont három találatos az nulla és tíz négy találatos van.

Előzmény: mma (1119)
mmormota Creative Commons License 2015.05.27 0 0 1120

3 autóra már felszerelted a rendszámot, kezedben a 4. rendszám, előtted egy szem autó rendszám nélkül, te meg tűnődsz hogy hová tegyem, hová is tegyem... :-)))

 

Előzmény: mma (1119)
mma Creative Commons License 2015.05.27 0 0 1119

Nem. Gondolj bármit rólam, de áruld el légy szíves a magoldást!

Előzmény: mmormota (1117)
mmormota Creative Commons License 2015.05.27 0 0 1118

Ez a legkönnyebben érthető (külön ajánlom a matematikával hadilábon álló olvtársaknak...):

http://quantumtantra.com/bell2.html

Előzmény: Creativus (1114)
mmormota Creative Commons License 2015.05.27 0 0 1117

A kérdés ugye az, hogy 5 emberből hány talált el 3 táblát, és hány 4-et. 

Ezt viccnek szántad?

Előzmény: mma (1116)
mma Creative Commons License 2015.05.27 0 0 1116

A választ nem mondom el, mert ha már tudjuk, akkor tényleg nevetségesen egyszerű.

 

 

Most már talán elárulhatod, mert ha valaki eddig nem jött rá (mint én), akkor már nem is fog. A kérdés ugye az, hogy 5 emberből hány talált el 3 táblát, és hány 4-et. Nekem fogalmam sincs, honnan lehetne ezt kitalálni.

Előzmény: Creativus (1111)
Creativus Creative Commons License 2015.05.27 0 0 1115

Bocsánat, az első link nem sikerült, itt a helyes:

 

http://www.termeszetvilaga.hu/X-Aknak/docs/kve1/khr.html

 

 

Előzmény: Creativus (1114)
Creativus Creative Commons License 2015.05.27 0 0 1114

Hogy mit akar közölni Hraskó, ebből a cikkből talán jobban kiderül:

 

http://forum.index.hu/EditArticle/ReplayEditArticle?a=135057943&t=9016035

 

Ebben nincsenek borítékok, de vannak házaspárok, sőt népszavazás is...

 

 

Ezen kívül érdemes elolvasni még ezt is (bár nem Hraskó), különösen az utolsó néhány bekezdést(!):

 

http://mek.oszk.hu/00500/00571/html/s12.htm

 

Ebből talán sejteni lehet, hogy nem az elméleteket kellene felülvizsgálnunk, hanem a szeretve tisztelt tudományos módszertanunkat kellene fenekestül felforgatni, illetve jönnie kéne egy zseninek, aki ebbe a módszertanba (annak korlátait átlépve) olyan új elemet képes behozni kiegészítésül, mint pl. a Newtoni machanikába Einstein, vagy akár a matematikába Gödel. És akkor majd nem a kauzalitás sérülése miatt bánkódhatunk, hanem végre újfent dölyfösen döngethetjük a mellünket, hogy mi "EMBEREK" aztán milyen okosak is vagyunk a középkori (azaz a mai!) nézetekhez képest!!!

 

Előzmény: Tuarego (1112)
Sidereus Nuncius Creative Commons License 2015.05.26 0 0 1113

 

Milyen medve?

 

Tuarego Creative Commons License 2015.05.26 0 0 1112

Nekem meg a Kőleves című népmese jutott eszembe, miközben a Hraskó cikket olvastam.

Aki nem ismeri ezt a mesét; röviden arról szól, hogy a csavaros eszű és üres gyomrú vándordiák azzal képeszti el a házigazdáit, hogy majd megmutatja nekik, hogyan kell kőlevest főzni. Fog egy követ, amit alaposan megmos, majd felrakja egy fazék vízbe főni. Ezután belerakja a hozzávalókat (zöldségek, hús stb.), majd amikor megfő a leves, a diák szépen kikanalazza a levest, a kő pedig ott marad a fazék alján...

Ha megnézzük, mi az érdemi része a spinkorrelációs kísérletnek, akkor rájövünk, hogy a borítékokkal való játék nem más, mint a kőlevesben a kő. Csupán arra szolgál valójában, hogy elvonja a nagyközönség figyelmét a lényegről, "felturbózza, megzenésítse" a mutatványt, s végül aztán egy olyan következtetésre jut, aminek semmi köze a történtek lényegéhez.

Hiszen mi is történik ténylegesen ebben a kísérletben? Veszünk egy protont és egy neutront, amiket fizikai közelségbe hozunk egymással, s ekkor ez a két részecske egymással ellentétes irányban szétrepül, majd a Stern-Gerlach berendezéssel próbáljuk megmérni e részecske párok spinvetületét.

Mármost, mi a fészkes fenét érdekli a szétrepülő protont és a neutront az, hogy valaki ez alatt borítékokat nyitogat a saját maga által kitalált szabályok szerint, s ezt elnevezi Bell-egyenlőtlenségnek? Körülbelül annyira számít ez, mint hogy hány éves a kapitány...

Ha csupán a tényeket nézzük, vagyis a részecskék szétrepülését, nem kétséges egy pillanatra sem az ok-okozatiság érvényesülése, abban a klasszikus formában, ahogyan közismert. A szétrepülő részecskék ugyanis nem véletlenül, nem a semmiből és nem valószínűségi lapon bukkannak elő, hanem fizikai valóságukban és egyértelműen annak okozataként, ahogyan előzőleg egymás fizikai közelségében hoztuk őket, s a szétrepülő részecskék fizikai jellemzői (tömeg, töltés, impulzus, spin) sem csak úgy vaktában jelentkeznek, hanem a fizikai törvényeknek megfelelően.

Ha ezek után (látszólag) valami furcsaságot találunk a spinvetületek mérésekor, vagyis olyan korrelációkat, amiket egy olyan borítékos játék analógiájából vezetnek le, aminek semmi köze sincs a kísérlet érdemi részéhez, – akkor kell-e azonnal a kauzalitás sérülésére gondolnunk? Nem inkább abba az irányban kellene-e kutatnunk, hogy mélyebben megismerjük a jelenség fizikai hátterét, s ne nyugodjunk bele a kvantummechanika – önmaga logikájának is ellentmondó – magyarázataiba?

 

Előzmény: Creativus (1111)
Creativus Creative Commons License 2015.05.26 0 1 1111

Két tanulságos esetet elevenítenék föl, melyeket - aki ismeri - sokszor eljátszatta már másokkal, bemutatván az emberi gondolkodás félresiklását. Az esetek egy itten folyó vitához kapcsolódnak, ám nem kvantummechanikai témájúak, ezért:


OFF

 

Az elsőt ifjúkorban lévőnek is fel lehet adni, mégpedig azoknak, akik az alsó tagozatos összeadás, kivonás unalmas példáin már rég túlestek. Egyfajta fejszámolási példának tünik, és ismerősen kezdődik:

 

"Egy busz - amin modjuk te vagy a sofőr - az egyik végállomásról a másikra tart.

- Az induláskor az üres buszra felszáll 15 utas.

- Az első megállónál leszáll 3 utas és felszáll 8.

- A következőnél leszáll 6 utas és felszáll 2.

- Az ezt követő megállóban leszáll 4 utas és felszáll 5.

- Megy tovább a busz és eljut a következő megállóba. Ott leszáll 1 utas és felszáll 11.

- Jön a következő megálló. Ott senki nem száll le, de 4-en felszállnak.

- Ezután, az újabb megállónál 12-en leszállnak, és 2-en pedig fel.

- A busz megérkezik a végállomásra."

 

Aki a feladatot kapja, az végig gondosan számol, sőt még a megállókat is mellékesen összeszámolja (mert már ezzel egyszer megviccelték). S ezután jön a kérdés:

 

"Hány éves a buszvezető?"

 

Erre a legtöbben csak azt tudják válaszolni, hogy 21 utas maradt a buszon, és a végállomásokkal együtt 8 megálló volt, és ebből nem következik a buszvezető életkora.

Persze ennél a beugratós feladatnál elég az első mondatot megismételni, és rögtön kiderül, hogy viccről volt szó, mert a feladat nem az utasok illetve a megállók számáról szól.

 

A másik esetet azoknak kell feladni, akik már jól elsajátították a kombinatorikát, és a valószínűségszámítást, és komolyabb feladatokkal is meg tudnak birkózni e téren.

 

"Négy gépkocsiról leszedik a rendszámtáblát, majd sszeszednek 100 embert, és egyenként megkérik őket, próbálják meg fölrakni a táblákat arra az autóra, amelyikre szerintük való. Közben följegyzésre kerül, hogy az egyes emberek hány autónál rakták föl helyesen a táblákat. Az eredményből az alábbiakat áruljuk el:

 

- 40 ember nem talált el egy táblát sem.
- 35 ember talált el csak egy táblát.
- 20 ember talált el pont 2 táblát.

 

A kérdés: hány ember talált el pont 3 táblát és hány ember találta el mind a 4 tábla helyét?"

 

Gyors válaszra sürgetjük a megoldót. A tapasztalatok szerin minél magasabb végzettségű akinek ezt feladjuk, annál inkább számolgatni kezd eloszlásokat, valószínűségeket, illetve megpróbál becsülni valamilyen értéket, miközben megjegyzi, hogy a feladat hiányos, kellene még hozzá adat.

 

Ha azonban olyanoknak adjuk fel, akik még nem is hallottak a valószínűségszámításról, pláne pl. összeadni és kivonni már tudó alsósoknak, akkor azok nevetve fújják a választ.

 

A választ nem mondom el, mert ha már tudjuk, akkor tényleg nevetségesen egyszerű.

 


ON


 

Bign Creative Commons License 2015.05.26 0 0 1110

"Már csak arra a "nehéz" logikai fejtörőre kéne válaszolni:

Vajon 9 9 9 9 9 9 9 9, egyenlő-e 0 3 3 6 3 6 6 9-el?

Nekem úgy tűnik (érzék csalódás?), hogy nem."

 

OK, ha nem megy, akkor nem megy.

Hátha vannak tőled jobb képességűek is. :-)

Mungo Creative Commons License 2015.05.26 0 0 1109

Mert ha kihúzzák alólad a mankót, önállóan nem vagy képes gondolkodni.

A te "önálló" gondolataidat látva, ez a megjegyzésed kifejezetten pozitív csengésű.
(Bár nem árt tudnod, hogy hízelgéssel nálam semmire sem mész.)
Szórakozz jól. Ha már a fejedbe vetted, hogy ezt az egyébként jobb sorsra érdemes fórumot rántod le a saját szintedre.

Előzmény: Bign (1108)
Bign Creative Commons License 2015.05.25 0 0 1108

"Innen kezdve még mindig bullshit...."

 

Mert ha kihúzzák alólad a mankót, önállóan nem vagy képes gondolkodni.

Ezt nem ismerheted be, ezért marad a másik pocskondiázása.

Nem vagy képes egy mondatot megérteni.

Mert ha megértenéd, s hibát találnál benne, akkor rendbe lenne, de te csak azt tudod ismételni, hogy "bullshit".

Ami azt mutatja, hogy a szavakat se érted.

Amúgy talán arról nem én tehetek, hogy Hraskó 4féle nagy borítékot említ, de 8-ra gondol,

s a 30 se úgy jön ki neki, ahogy kijön, de ez most mellékes.

 

Te egyelőre az állításomat se érted. Ezért semmi reményed rá, hogy megcáfold, vagy megerősítsd.

 

mmormota már bizonyította, hogy a logikája, csak kicsit gyengébb egy döglött szúnyognál.

A kockás példánál jeleztem is neki. Tehát vele direkt-módon nem fogok logikai játékot játszani.

Igaz, a nagyon jól tud "üvölteni" a farkasfalkával, de talán másra lenne szükség.

 

Te még össze szedheted magad.

 

Talán ott kéne kezdeni, hogy az egész kísérlet célja, statisztikai elemzése az észleléseknek.

Hraskó a szobajöhető párok valószínűségét fejezi ki a borítékokból.

Megtalálod, vagy idézzem be sokadszorra?

Ebből következően HA változnak a borítékok valószínűségei, akkor a statisztika is változni fog.

Amikor minden kombináció szerepel, akkor olyan "hétköznapi" statisztikát kapunk, amit kapnunk kell a korreláció figyelembe vételével.

A kombinációk csökkentésével ez az egyensúly felborul.

Ha a spin, s más hasonló kísérletek esetében csak a csökkentett kombinációkról készül statisztika,

ezért az előfordulások is elfognak térni, mintha nem a korrelációnak megfelelő lenne.

 

"a relatív gyakoriság leszámlálásával megállapíthatnánk, mekkorák az egyes típusok wi (i = a, b, c, d) előfordulási valószínűségei" /Hraskó/

(itt is csak 4-et említ, és nem 8-at)

Ezek után csak azt a "rendkívül megerőltető" számolást kell ellenőrizned, hogy mennyi a felsorolt nagy borítékok gyakorisága a teljes 30 kombinációban, amit kaphatunk 8féle nagy boríték esetében.

Mindegyik nagy boríték esetében 9 kombináció valósulhat meg, bár ezek között lesznek egyformák is.

Ugyanezt el kell végezni a kiválasztott 15 kombináció esetében is.

Én ezt elvégeztem helyetted: 0 3 3 6 3 6 6 9.

Már csak arra a "nehéz" logikai fejtörőre kéne válaszolni:

Vajon 9 9 9 9 9 9 9 9, egyenlő-e 0 3 3 6 3 6 6 9-el?

Nekem úgy tűnik (érzék csalódás?), hogy nem.

Ha jól értelek, szerinted egyenlő.

Ezért erre kérnék valami érvet, a "bullshit"-en kívül. :-)   

 

Előzmény: Mungo (1104)
mmormota Creative Commons License 2015.05.25 0 0 1107

jav: "minden eset kimenetel valószínű" helyett

minden lehetőség egyformán valószínű

Előzmény: mmormota (1105)
mmormota Creative Commons License 2015.05.25 0 0 1106

Remélem, nem magyaráztam félre a hozzászólásodat... :-)

Előzmény: Mungo (1104)
mmormota Creative Commons License 2015.05.25 0 0 1105

Mungo lényegre törő hozzászólását kicsit részletezem.

 

A cikknek van egy gondolatmenete. Kiszámol dolgokat, és állításokat tesz.

 

Most ott tart a dolog hogy beláttad, a kísérletezők 30 féle sort írhatnak le. (ha nagy borítékon belül azonos számú kis borítékba biztosan nem tesznek egyforma színt)

Ez triviálisan igaz, nagy nehezen te is összeszámoltad.

Ha az oszlopok sorrendjétől eltekintünk, akkor meg 15 marad.

Ez is triviálisan igaz.

 

Mit mondasz te? Hogy nem szabad eltekinteni ezért meg azért. És jössz egy gondolatmenettel, aminek semmi köze a cikk gondolatmenetéhez. (most nem foglalkozom azzal, hogy a tied jó-e, mert érdektelen a cikk szempontjából)

 

Aztán azt mondod, Hraskó hibázott, mert nem arra ment amerre te. És? Ebből csak annyi következne, hogy nem arra ment. Szíve joga. (ő tudta merre érdemes menni, neked meg lövésed sincs)

 

Akkor hibázna, ha hibás állítást tenne. Te azt hiszed, biztos tesz majd, mert csak az lehet a jó gondolatmenet amit te elképzelsz, és ahhoz mást kellene kiszámolnia. (egy fenét) Amit meg tényleg csinál Hraskó, addig el se jutottál.

 

No, kb. ezt jellemezte Mungo a lakonikus bullshittel.

 

Megjegyzés: úgy tűnik, azért akarsz görcsösen más dolgokat kiszámolni, mert azt hiszed egyetlen egy módon lehet valószínűségekről állításokat tenni, nevezetesen úgy mint a kocka esetében tetted, feltételezni hogy minden eset kimenetel valószínű, összeszámolni ezeket, venni a kedvezőket, osztás, kész. Csakhogy Hraskó gondolatmenete nem ilyen, nem is lehet ilyen, hiszen senki se mondta hogy minden boríték bekészítés egyformán valószínű. Teljesen másra játszik, te meg ahelyett hogy követnéd a gondolatmenetét, azon tipródsz hogy nem azt csinálja amit a te rögeszméd szerint kellene.

Ahelyett hogy arra figyelnél mit csinál, és akkor szólnál ha rossz állítást tesz.  

Előzmény: Bign (1103)
Mungo Creative Commons License 2015.05.25 0 0 1104

Ismerjük el, azért már ez is szép teljesítmény tőled, hogy fel tudtad ismerni az 1094-ben felsorolt közepes boríték kiosztásokat és a lehetséges 30 esetet a kis boríték párok esetében. 

 

Minden nagy borítékhoz tartozik 9 kimenet.

Válaszuk ki a Hraskó-féle 15 kimenetet!

Akkor a nagy borítékok...

 

Innen kezdve még mindig bullshit....

Előzmény: Bign (1103)
Bign Creative Commons License 2015.05.25 0 0 1103

Bár előre sejtettem az eredményt, végig számoltam az összes lehetőséget. illetve ellenőriztem mindent, mivel a hozzászólásokban voltak tévedések, elírások.

 

A nagy borítékok esetében ha az ismétlődésektől (*8) eltekintünk, akkor 

KKK,PPP

KKP,PPK

PKK,KPP

PKP,KPK

PPP,KKK

PPK,KKP

KPP,PKK

KPK,PKP

tartalmúak lehetnek, amennyiben a baloldali és jobb oldali közepes borítékot megkülönböztetjük,

s így a megfelelő oldali szobába kerül továbbításra.

Ebben még egyet értünk.

Elvileg 30-féle kis boríték kombináció jöhet létre a 8féle bemenetből. 

Minden nagy borítékhoz tartozik 9 kimenet.

Válaszuk ki a Hraskó-féle 15 kimenetet!

Akkor a nagy borítékok (a fenti sorrendben)

0 3 3 6 3 6 6 9 kombinációban érintettek és ezért 9 6 6 3 6 3 3 0 kombináció nincs figyelembe véve.

Vagyis ebben a léptékben is igaz az az állítás, amit eredetileg a 4féle nagy boríték esetében tettem.

 

Neked ezt kéne megértened. 

 

mmormota Creative Commons License 2015.05.24 0 0 1102

Ez látható, hogy eleve nem igaz.

 

Triviálisan igaz. Elmagyaráztam én is, más is, de nálad beállt valami agygörcs ami nem teszi lehetővé hogy megértsd. Ha eddig nem értetted meg, el se tudom képzelni, hogy lehetne megmagyarázni. Nincs a környezetedben valaki aki tanult matematikát, és elhiszed róla hogy tudja mit beszél? Mutasd meg neki ezt az épületes vitát (ne te mondd el a saját szavaiddal hanem olvastasd el vele), aztán hallgasd meg mit mond. Az talán oldaná a görcsöt, mert most beálltál arra hogy mindenki hülye csak te vagy helikopter.

 

 

 

 

Előzmény: Bign (1099)
Mungo Creative Commons License 2015.05.24 0 0 1101

Teljesen reménytelen eset vagy.

Egy Hacsek - Sajó párbeszéd ehhez képest egy akadémiai értekezés.

De hát vannak boldogok és mint tudjuk övék a mennyek országa...

Előzmény: Bign (1100)
Bign Creative Commons License 2015.05.24 0 0 1100

"Ez a mutatvány már általános iskola 3-ik osztályában többnyire már sikerülni szokott."

 

Úgy látom neked nem, mert egyébként nem keverted volna össze a nagy borítékokban lévő közepes borítékok 16féle sorrendjét az egyféle sorrend 36féle kombinációjával.

Igazság szerint nem érted.

 

01 PPP,KKK PPK,KKP PKP,KPK KPP,PKK

ez egyenlő ezzel

01

1P2P3P,1K2K3K

1P2P3K,1K2K3P

1P2K3P,1K2P3K

1K2P3P,1P2K3K

és két közepes boríték párból 9-9 kis boríték pár lesz.

 

 

Előzmény: Mungo (1097)
Bign Creative Commons License 2015.05.24 0 0 1099

http://hrasko.com/xaknak.php?docid=10015

 

Idézetek tőle.

 

"Összesen tehát 24 + 6 = 30 különböző sort találunk a táblázatban."

Ez látható, hogy eleve nem igaz.

 

"Ha az oszlopok sorrendjétől eltekintünk — vagyis pl. az (1P, 2K) és a (2K, 1P) típusú sorokat azonos csoportba soroljuk, — akkor csak a következő 15 különböző sortípus marad meg: (1P, 1K), (1P, 3P), (2P, 2K), (3P, 3K), (1P, 2P), (1P, 2K), (1P, 3K), (2P, 3P), (2P, 1K), (2P, 3K), (3P, 1K), (3P, 2K), (1K, 2K), (1K, 3K), (2K, 3K)."

 

HA eltekintünk, de láthattuk, hogy következmények nélkül nem tekinthetünk el tőle.

 

"De annyit a szabályok megsértése nélkül is megtehetünk, hogy pl. a p(1P, 2P) valószínűséget az ismeretlen wi-ken keresztül kifejezzük. Nyilvánvaló, hogy csak azok a nagy borítékok vezethetnek 1P, 2P vagy 2P, 1P típusú bejegyzésre az 1. táblázatban, amelyek c., vagy d. típusúak. Annak valószínűsége, hogy egy nagy boríték ezen típusok valamelyikébe tartozzon (wc +  wd)-vel egyenlő. Annak valószínűsége pedig, hogy az a kísérletező, akihez az (1P, 2K, 3K), vagy az (1P, 2K, 3P) típusú boríték került éppen a 2. kis borítékot nyissa fel (1/3)2 = 1/9-el egyenlő, mert mindkét kísérletező független kockadobással állapítja meg a felnyitandó boríték sorszámát."

 

Sokadjára, s számold az ujjaidon, ha nem hiszel nekem:

az általad (és Hraskó által) felsorolt 15 kombinációban nem 9_9_9_9 a lehetőség, hanem 8_4_5_7.

/újra számoltam a cikkben lévő adatokból/

02 - 1 P 1 K - 1 1 1 1

05 - 1 P 2 P - 0 0 1 1

06 - 1 P 2 K - 1 1 0 0

08 - 1 K 2 K - 0 0 0 0

09 - 1 P 3 P - 0 1 1 0

10 - 1 P 3 K - 1 0 0 1

12 - 1 K 3 K - 0 0 0 0

16 - 2 K 1 K - 0 0 1 1

18 - 2 P 2 K - 1 1 0 0

22 - 2 P 3 K - 1 0 0 0

23 - 2 K 3 P - 0 0 1 0

24 - 2 K 3 K - 0 0 0 1

26 - 3 P 1 K - 1 0 0 1

30 - 3 P 2 K - 1 0 0 0

34 - 3 P 3 K - 1 0 0 1

 

Külön felhívnám a figyelmedet, a 1K2K és a 1K3K kombinációkra, amelyek az adott leosztásból nem jöhetnek létre.

Mondhatod, hogy esetleg egy másik kombinációból kijöhet.

Igen, de akkor meg másik kombináció nem valósulhat meg.

A lényeg 1-1 kombináció nem 1/9 eséllyel valósulhat meg, tehát a számítások hibásak.

S miért ez a 13 megvalósuló (+2 nem megvalósuló) van figyelembe véve a 21 megvalósulóból és 15 nem megvalósulóból?

Előzmény: Bign (1096)
Mungo Creative Commons License 2015.05.24 0 0 1098

(Ez a mutatvány már általános iskola 3-ik osztályában többnyire már sikerülni szokott.)

Előzmény: Mungo (1097)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!