Keresés

Részletes keresés

Gézoo Creative Commons License 2006.11.29 0 0 26342

Szia!

 

  Az arány a nagysággal változik?? Ez új..  Ugye nem gondoltad át?

 

 Dehogyis változik!  Hiába rövidebb a futási idő, az arány ugyanaz lesz.

 

  Tudod, Einstein-Lorentz szerint egy derékszögű háromszög átfogója

a fénysebesség, a sebességkülönbség az egyik és a rövidülés a másik befogó..

   Szerintük szimpla lineáris mértani összefüggéssel.. így természetes, hogy

mindenkor arányt kapj és az arányt a futam hossza nem befolyásolja, mert

 nem vesz részt a kialakításában..

 

   A másik: nem gondolta Mmormota komolyan. Mindig ezzel a szöveggel tér ki..

               "Számold ki és ÉN majd megmondom, hogy jó-e !?"...

   

Előzmény: TEODOR (26334)
Simply Red Creative Commons License 2006.11.29 0 0 26341

Ha mérni nem lehet, akkor fényképezni sem lehet.

 

Ez igaz. Viszont az is, hogy ha pedig lehet mérni, akkor pedig fényképezni is lehet.

---------

Ha már  elhangzott a hozzászólásban a "logika" szó, inkább pontosítom magamat:

 

Ez igaz. Viszont az is, hogy ha pedig lehet mérni, akkor pedig fennáll a lehetősége, hogy fényképezni is lehessen.

 

(Ciprián állításával egyébként logikailag az az állítás ekvivalens, hogy ha lehet fényképezni, akkor mérni is lehet.)

Előzmény: Simply Red (26337)
Dubois Creative Commons License 2006.11.29 0 0 26340

"így a szembejövő rúdat hoszabbnak látod a valódi méreténél."

 

26280-ban még amellett kardoskodtál, hogy a közeledő rúd rövidül. :)

 

Előzmény: magnum56 (26339)
magnum56 Creative Commons License 2006.11.29 0 0 26339

TEODOR,

 

Nagyon jó helyen kapisgálsz. De ehhez nem kell radar. A méretváltozás nagyon könnyen bemutatható. Ehhez azonban tudni kell két dolgot az emberi szemről:

 

1. Az emberi szem nem a tárgyakat magukat látja, hanem a tárgyakról a szembe érkező fénysugarakat

 

2. A szem az egyidejűleg beérkező fénysugarakból alkotja meg a képet a tárgyakról

 

Ezek miatt, a nagy sebességgel haladó tárgyak hosszúsága (sebesség irányába eső mérete) látszólag megváltozik.

 

Ha jön veled szembe egy hosszú rúd, akkor a közelebbi végéről érkező fénysugár x időpontban esik a szemedbe. A távolabbi végéről érkező fénysugár azonban (amely x időpontban esik a szemedbe) korábban indult, mint a rúd közelebbik végéről jövő fénysugár, hiszen nagyobb utat kelett neki megtennie.

 

Ezért a rúd távolabbi végét korábbi időpillanatban látod, mint a közelebbi végét. Mivel a rúd távolabbi vége egy korábbi időpontban még távolabb volt, így a szembejövő rúdat hoszabbnak látod a valódi méreténél.

 

A távolodó rúd pedig ugyanilyen megfontolások alapján rövidebbnek látszik.

 

Ezt rajzold le magadnak, úgy könyebben érthető lesz.

 

 

Előzmény: TEODOR (26336)
Dubois Creative Commons License 2006.11.29 0 0 26338

"Ej mmormota, Duboissal már levezettük, hogy nem hiba. Olvasd vissza légyszíves."

 

Én semmi ilyesmit nem vezettem le.

Előzmény: cíprian (26320)
Simply Red Creative Commons License 2006.11.29 0 0 26337

Megállapítottuk, hogy a két pont az álló rendszerben egymástól mindig 1m  távolságra megy. Azt is megállapítottuk, hogy ugyanazon a két pont között 1m távolságot mérünk a mozgó rendszerben is. Átszámítással megállapítjuk a kontrakciót is.

 

Menjen nagyobb sebességgel a két pont, ugyanolyan 1m távolságra az álló rendszerben. Ugyanúgy 1m távolságot mérünk a mozgó pontról is. Számítással viszont nagyobb mértékű kontrakciót állapítunk meg.

 

 

Következtetés.

Kontrakciót sohasem tudunk méréssel megállapítani.

Az álló rendszerben mérve mindegy, hogy milyen sebességgel ment a két pont, a távolságuk azonos marad. Kontrakciót tehát nem lehet mérni két különböző sebességű pontpár között sem álló rendszerben

Ha mérni nem lehet, akkor fényképezni sem lehet.

Kontrakciót csakis számítással hoztunk létre.

 

Szerintem a fenti logika hézagmentes.Szerintem a fenti logika hézagmentes.

 

:-)))

 

Ugye a (26265)-re, vagyis erre vonatkozik az egész fejtegetésed:

--------------------------

Tegyünk be egy-egy számítógépes programot a rakétákba. A programok teljesen azonosak legyenek. Álló rendszerben tesztelik a programokat, és meghatározzák az álló koordinátákhoz képest az s(t) programokat, amelyek mint tudjuk azonosak, de teljesen tetszőlegesek. A rakéták közötti távolság nem változik, mert most jön a huncutság:a rakéták pontszerűek legyenek.

--------------------------

 

Már ez sincs egészen világosan megfogalmazva, de azért sejthető, hogy arra gondoltál, hogy, ha egy rakéta út-idő függvénye s(t), akkor az induláskor tőle x távolságra lévőé s(t)+x. Mindez ugyebár az álló rendszerben mérve, vagyis nem a rakétákkal együtt mozgüéban.

 

Megállapítottuk, hogy a két pont az álló rendszerben egymástól mindig 1m  távolságra megy.

 

Nem megállapítottuk, hanem feltettük. Szőrszálhasogatásnak tűnk, de nem az.

 

Azt is megállapítottuk, hogy ugyanazon a két pont között 1m távolságot mérünk a mozgó rendszerben is.

 

Olyannyira nem, hogy te magad is az ellenkezőjét mondod (26272)-ben:

 

A földi indításkor legyenek a rakéták egymástól s(0) távolságra. A rakéták ha elérik a v sebességet, akkor a rakéták rendszerében 1/0,6s(0)=1,66s(0) távolság lesz a rakéták között. A rakéták között tehát növekedett a távolság.

 

Átszámítással megállapítjuk a kontrakciót is.

 

Ez úgy, ahogy van, értelmetlenség. Milyen kontrakciót állapítasz meg, ha szerinted mindkét rendszerben 1 m a rakéták közti távolság?

 

Menjen nagyobb sebességgel a két pont, ugyanolyan 1m távolságra az álló rendszerben. Ugyanúgy 1m távolságot mérünk a mozgó pontról is.

 

De nem!!!!! Legalábbis a relativitáselmélet szerint, nem. Sőt a te fent idézett (26272)-beli véleményed szerint sem!

 

Számítással viszont nagyobb mértékű kontrakciót állapítunk meg.

 

Kezdem érteni. A te fejedben a kontrakció valami olyasmi, amit csak ki lehet számítani (a fene tudja miért), de méréssel soha nem lehet ellenőrizni. A mérésekre szerinted a newtoni fizika érvényes, a relativitáselmélet csak arra jó, hogy valami misztikus, és soha nem ellenőrizhető kontrakciókat számoljon. Hát nem így van.

Jelen esetben speciel az van, hogy a  rakéták az előírt feltétel miatt az álló rendszerben mérve végig azonos távolságra vannak. Az álló rendszerben a specrel szerint a mozgó pontok között mindig kisebb távolságot mérünk, mint a pontokkal együtt mozgóban. Ugyanezt máshogy fogalmazva: a pontokkal együtt mozgó rendszerben mindig nagyobb távolságot mérünk a pontok között, mint az állóban.

 

Következtetés.

Kontrakciót sohasem tudunk méréssel megállapítani.

 

Ez semmiből nem kövezkezik. Ez a te különbejáratú axiómád, amit végig használtál is, és nem igaz. 

 

 

Az álló rendszerben mérve mindegy, hogy milyen sebességgel ment a két pont, a távolságuk azonos marad. Kontrakciót tehát nem lehet mérni két különböző sebességű pontpár között sem álló rendszerben

 

Hohó! Csak ebben a speciális páldában nem, ahol ez volt a feltevés!  Ha az a feltevés (ami szokott is lenni), hogy a mozgó rendszerben változatlan valaminek a hossza, akkor az álló rendszerben kisebbnek mérjük a hosszukat.

 

Ha mérni nem lehet, akkor fényképezni sem lehet.

 

Ez igaz. Viszont az is, hogy ha pedig lehet mérni, akkor pedig fényképezni is lehet.

 

Kontrakciót csakis számítással hoztunk létre.

 

Mégegszer: ez a te saját, külön bejáratú rögeszméd. A spec. rel. számításai mérési eredményekre vonatkoznak.

 

 

Előzmény: cíprian (26313)
TEODOR Creative Commons License 2006.11.29 0 0 26336
Azt lesheted lusta vagyok hozzá:-)))
Előzmény: mmormota (26335)
mmormota Creative Commons License 2006.11.29 0 0 26335
Ha kiszámolod, megmondom jó-e.
Előzmény: TEODOR (26334)
TEODOR Creative Commons License 2006.11.29 0 0 26334

Két mérésból már sebeséget is tud számolni .

Minnél közelebb van a szegecs annál hosszabb , mert a futási időben kissebbek az eltérések.

Előzmény: mmormota (26333)
mmormota Creative Commons License 2006.11.29 0 0 26333

Ez a rajz önmagában nem mond eleget. Kérdés, a két radarvisszhang mérésből hogyan számolod ki a szegecs hosszát.

 

Pusztán az, hogy a fej közelebb jön amíg eléri a radarimpulzus, még nem jelent kontrakciót. Gondolj bele, ha egy denevér mérne így hanghullámokkal, az is rövidebbet mérne ezen az alapon.

Előzmény: TEODOR (26331)
Adi001 Creative Commons License 2006.11.29 0 0 26332
mára tényleg jó éjt
s lehet a fő momentum hogy igeni számolni kell! mégha elsőre nem is látszik lényegesnek ...egyszerűen megmutatja az intuíció esetleges félresiklását
szép álmokat/számokat :)
TEODOR Creative Commons License 2006.11.29 0 0 26331

Mmormota javits ki ha rosszul rajzoltam .

 

A bogár radar mérést végez egy impulzussal , és lám rövid a mozgó szegecs:-)))

 

 

 

 

Előzmény: mmormota (26325)
Adi001 Creative Commons License 2006.11.29 0 0 26330
"Viszont az is igaz, hogy a mozgással egyébként párhuzamos élét kisebb szög alatt látjuk mint álló helyzetben. Éppen mert elfordult kockának látjuk, az elfordult élet kisebb szög alatt."
persze hogy más szög alatt ... írtam is hogy számoljunk 3d ben akár tetszöleges szögekkel ..... levezetheted felőlem "sugárosztású" körel is ne csak kockával s elmélkedj azon ha már nem számoltál velem ......
Előzmény: mmormota (26328)
Adi001 Creative Commons License 2006.11.29 0 0 26329
nem azt szajkóztam hogy ne vegyünk ütközést ? mert belekötnek az idealizálásba ?
azon gondolkozz el amit félig beláttál hogy nem látható(szó szerint nem látható!!!) semmi méretváltozás .....
ha nem megy s lesz majd időm s van kedved nem félbehagyva mint mormotával a dolgot levezethetjük számszerűleg(!) s nem kapkodva és hibázva a számolásokban
Előzmény: cíprian (26327)
mmormota Creative Commons License 2006.11.29 0 0 26328

Dubois meg azt kell hogy megértse hogy a konrakció láthatatlansága levezethető a terrell jelenségből .. nem rövidülés látszódik hanem max "elfordulás"

 

Nézünk egy repülő kockát, amely elhalad mellettünk. Egy elfordult kockát látunk, ez teljesen igaz. Viszont az is igaz, hogy a mozgással egyébként párhuzamos élét kisebb szög alatt látjuk mint álló helyzetben. Éppen mert elfordult kockának látjuk, az elfordult élet kisebb szög alatt. Így függ össze a dolog.

 

 

Előzmény: Adi001 (26324)
cíprian Creative Commons License 2006.11.28 0 0 26327

Nem erről van szó, hanem arról, hogy nincs szükség ütközésre.

 

A furat rendszerében nem változhat a mozgó szegecs mérete. (26313)

Ha nem válktozik meg a szegecs mérete, akkor egyudejűleg éri el a hegye a bogarat és a feje a furat száját. Nincs szükség ütközésre és passz.

Előzmény: Adi001 (26324)
Adi001 Creative Commons License 2006.11.28 0 0 26326
szóval ezek az elvek s míg a számolási kérésekre olyan válaszok jönnek amik ....addig meddő lesz a vita többsége ...
szóval joccakát mindenkinek mek fogatmosni
mmormota Creative Commons License 2006.11.28 0 0 26325

Ez így nem megy. Matematika vagy hagyjuk. Koordináták, időpontok, egyenletek. Üres szócséplés helyett.

 

Előzmény: cíprian (26323)
Adi001 Creative Commons License 2006.11.28 0 0 26324
te meg azt értsd meg pls hogy épp a miatt hogy nem látod a rövidülést pl. a szegecs egyik végéről ne feledd hogy mivel egyformának látod s a tulfélről időbe telt mig ideért a fény tehát nem ott van ahol látod hanem a szegecsről nézve rég kampec a bogárnak ......
Dubois meg azt kell hogy megértse hogy a konrakció láthatatlansága levezethető a terrell jelenségből .. nem rövidülés látszódik hanem max "elfordulás"
Előzmény: cíprian (26319)
cíprian Creative Commons License 2006.11.28 0 0 26323

Ej mmormota, nem vettem el tőled a homokozólapátot. :-)

 

Azt állítottam, hogyha 1m hosszúnak mérjük a rudat álló rendszerben, akkor mozgó rendszerben is 1m-t mérünk.

 

Már ezt is tagadod, mi jön még :-)

Előzmény: mmormota (26318)
mmormota Creative Commons License 2006.11.28 0 0 26322

Ej mmormota, Duboissal már levezettük, hogy nem hiba. Olvasd vissza légyszíves.

 

Hmmm. Nem ezt mondta? "Tévedésben vagy. Kevered a rendszereket."

 

Amiről beszélünk, az a Bell Spaceship paradoxon. Szinte minden specrel könyv foglalkozik vele. Teljesen meglepő, hogy ellentétes álláspontot képviselsz, ráadásul abban a hitben, hogy egyezik a véleményed a papírformával.

 

Miért nem alkalmazod a Lorentz trafót? Egyből látnád mi van.

Előzmény: cíprian (26320)
TEODOR Creative Commons License 2006.11.28 0 0 26321
De ehez nem kell spec. rel. elég csak az abszolut merev test:.-)))
Előzmény: cíprian (26319)
cíprian Creative Commons License 2006.11.28 0 0 26320
Ej mmormota, Duboissal már levezettük, hogy nem hiba. Olvasd vissza légyszíves.
Előzmény: mmormota (26318)
cíprian Creative Commons License 2006.11.28 0 0 26319

A 26313 alapján kijelenthetem, hogy a furat rendszeréből nézve a mozgó szegecs hosszúsága nem változik.

 

Ebből következik, hogy ütközésre nincs szükség. A furat rendszerében egyidejűleg érkezik meg a szegecs hegye a bogár felszínére valamint a szegecs feje a lyuk szájához. Az ütközés tényét tehát mellőzhetjük. Ezáltal feleslegessé vált az elmélkedés az információ terjedéséről is.

 

A bogár tehát élve marad.

Előzmény: TEODOR (26316)
mmormota Creative Commons License 2006.11.28 0 0 26318

Most akkor hagyjuk, vagy vitatkozunk? :-)

 

Azt is megállapítottuk, hogy ugyanazon a két pont között 1m távolságot mérünk a mozgó rendszerben is.

 

Ez a hiba.

 

Sokkal hatékonyabb, és sértődésre kevésbé alkalmat adó lenne a vita, ha mozgásegyenleteket írnál. A matematika nyelve egyértelműbb, mint a beszélt nyelv.

Előzmény: cíprian (26315)
Adi001 Creative Commons License 2006.11.28 0 0 26317
persze hogy az :) ezen killódtam vele egész nap csak a cél előtt adta fel Dubois meg még rá is erősített ....
azt kéne felfogni hogy a kontrakciót épp a távoli események egyidejűségének elromlása takarja el s ezért nem lesz látható (!)
Előzmény: cíprian (26315)
TEODOR Creative Commons License 2006.11.28 0 0 26316

Ciprian a logikád tökéletes :-)) a mozgó rendszerből áttérve álló rendszerre valóban mindegy milyen sebesség volt előzőleg , de egy kiterjedésel rendelkező testre muszáj megadnod egy megfogási pontott akár abszolut merev vagy pedig rugalmas . és innen számold a "c"-nek megfelelő késleltetést.

 

Előzmény: cíprian (26313)
cíprian Creative Commons License 2006.11.28 0 0 26315
Makacs ember lehetsz, ha a 26313 alapján sem látod be, hogy kontrakciót álló rendszerben nem lehet lefényképezni.
Előzmény: mmormota (26314)
mmormota Creative Commons License 2006.11.28 0 0 26314

majd ha kipihentem mmormota fáradalmait talán ujra nekifoghatunk valakivel aki "nem mondja be az unalmast"

 

Nagyjából az egyetlen dolog, amiben egyetértek Cipriannal: jobban jársz ha elolvasol egy könyvet. Pl. Taylor-Wheeler: Téridő fizika

A fórum az alapok megtanulására nem túl szerencsés, inkább ha elakadsz, vagy ha kontrollálni akarod a tudásodat.

Előzmény: Adi001 (26312)
cíprian Creative Commons License 2006.11.28 0 0 26313

A távolság kontrahálódik két pont között, de most álljunk meg egy kicsit.

 

 

Megállapítottuk, hogy a két pont az álló rendszerben egymástól mindig 1m  távolságra megy. Azt is megállapítottuk, hogy ugyanazon a két pont között 1m távolságot mérünk a mozgó rendszerben is. Átszámítással megállapítjuk a kontrakciót is.

 

Menjen nagyobb sebességgel a két pont, ugyanolyan 1m távolságra az álló rendszerben. Ugyanúgy 1m távolságot mérünk a mozgó pontról is. Számítással viszont nagyobb mértékű kontrakciót állapítunk meg.

 

 

Következtetés.

Kontrakciót sohasem tudunk méréssel megállapítani.

Az álló rendszerben mérve mindegy, hogy milyen sebességgel ment a két pont, a távolságuk azonos marad. Kontrakciót tehát nem lehet mérni két különböző sebességű pontpár között sem álló rendszerben

Ha mérni nem lehet, akkor fényképezni sem lehet.

Kontrakciót csakis számítással hoztunk létre.

 

Szerintem a fenti logika hézagmentes.

 

 

Előzmény: cíprian (26311)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!